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a b s t r a c t

Generalized classifier neural network is introduced as an efficient classifier among the others. Unless
the initial smoothing parameter value is close to the optimal one, generalized classifier neural network
suffers from convergence problem and requires quite a long time to converge. In this work, to overcome
this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost
function instead of squared error. Minimization of this cost function reduces the number of iterations
used for reaching the minima. The proposed method is tested on 15 different data sets and performance
of logarithmic learning generalized classifier neural network is compared with that of standard one.
Thanks to operation range of radial basis function included by generalized classifier neural network,
proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt
the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence
ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease
in training time, classification performance may also be improved till 60%. According to the test results,
while the proposed method provides a solution for time requirement problem of generalized classifier
neural network, it may also improve the classification accuracy. The proposed method can be considered
as an efficient way for reducing the time requirement problem of generalized classifier neural network.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Supervised learning neural networks generally learn by updat-
ing weight values denoting synapses of biological neural system.
Therefore, weights are the key parameters of neural networks.
There are several learning algorithms defined for obtaining ap-
propriate weight values. Learning algorithms should be fast while
they provide optimized weights. Correlation, outstar, perceptron,
Widrow–Hoff (Least Mean Square, LMS), Delta learning, and Lev-
enberg–Marquardt approaches are some of the supervised learn-
ing methods (Wilamowski, 2009). In perceptron learning, weights
are updatedwith themultiplication of input and the difference be-
tween the desired output and the output of network. LMS learning
aims to minimize squared error function. Error function is defined
as sum of squared difference between the output of network and
the desired output, given in (1) where i denotes ith neuron, R is the
number of training data, net ir denotes the output of ith neuron for
rth training datum, dir denotes the target value of ith neuron for
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rth training datum and ei represents the error value of ith neuron.

ei =

R
r=1

(net ir − dir)2 . (1)

Change of weight is calculated with the derivative of error
function (Widrow & Hoff, 1960). There are two kinds of update
named as incremental and batch. In incremental update, weights
are changed after each training. On the other hand, in batch train-
ing after applying all training samples and obtaining average error,
weights are updated (Widrow & Hoff, 1960; Wilamowski, 2009).
Incremental learning converges to minimum faster than batch ap-
proach, however; performance of incremental learning depends on
the order of inputs (Widrow&Hoff, 1960;Wilamowski, 2009). Lin-
ear regression provides one step learning while Least Square Error
(LSE) requires many iterations. It is also used for training neural
networkswith linear activation function (2), where X,W and d de-
note inputs, weights and desired outputs respectively.

XW = d

W =

XTX

−1
XTd.

(2)

Delta learning rule is an improved version of LMS. Difference
between LMS and delta learning rule is the activation function of
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network. Both batch and incremental learning approaches can be
used in delta learning rule as in LMS. Backpropagation learning
is based on delta learning rule and named as gradient descent
algorithm (McClelland & Rumelhart, 1988).

Another learning rule known as Levenberg–Marquardt (LM) al-
gorithm uses Jacobian matrix with trust region strategy. It updates
weights as given in (3), where wk denotes weights of kth iteration,
Jk denotes the Jacobian matrix, e is calculated error, µ is a positive
coefficient and I is the identitymatrix. For each step it requires two
major processes. One of them is Jacobian matrix calculation and
the other is the computation of the inverse of the squared Jaco-
bian matrix. Hence, generally LM is not used for training of large
neural networks due to calculation complexity (Levenberg, 1944;
Marquardt, 1963).

wk+1 = wk −

JTk Jk + µI

−1
JTk e. (3)

In Radial Basis Function (RBF) based neural networks such
as Generalized Regression Neural Network (GRNN), Probabilis-
tic Neural Network (PNN) and Generalized Classifier Neural Net-
work (GCNN), smoothing parameter determines the performance
of methods instead of weights. Therefore, determining optimal
smoothing parameter is critical for these approaches. There are
studies for optimizing smoothing parameterwith gradient descent
method (Berthold & Diamond, 1998; Lee, Lim, Yuen, & Lo, 2004;
Mao, Tan, & Set, 2000; Masters & Land, 1997).

GCNN is an RBF based neural network for classification. It uses
regression based convergence, diverge effect term and gradient
descent based smoothing parameter optimization to solve prob-
lems encountered by PNN and GRNN such as overfitting, optimal
smoothing parameter value and stuck neuron problems. Regres-
sion based convergence is provided by assigning a value 0.9 or 0.1
to each datum according to its class. GCNN uses diverge effect term
in N neurons of summation layer, which is an exponential form
of y (j, i) − ymax. Diverge effect term increases the effect of y (j, i)
and separates data that belong to different classes. Smoothing pa-
rameter is the most important parameter of RBF based neural net-
works. Smoothing parameter optimization is provided by gradient
descent learning in GCNN. Efficiency of GCNN is proved by test re-
sults. Although smoothing parameter optimization increases the
efficiency, it leads to long training time requirement. Long train-
ing time requirement can be considered as a drawback of GCNN
(Ozyildirim & Avci, 2013). It is observed that the initial value of
smoothing parameter the key component of GCNN, affects the
classification performance and determines the required time to
converge. The farther the smoothing parameter from the optimal
value, the longer convergence time is required.

In this work, a learning method named as Logarithmic Learning
GCNN (L-GCNN) is proposed for reducing training time and im-
proving the efficiency of standard GCNN. The approach contains
the main idea of maximizing logarithmic likelihood of probabilis-
tic assumption based on the logistic regressionmodel. Since GCNN
has regression based classification method, unlike squared error
approach, logarithmic function provides continuous optimization
within a range. While efficiency of GCNN is improved, the number
of iterations are decreased by using the proposed learningmethod.
L-GCNN is tested on 15 different data sets inMATLAB environment
with different initial smoothing parameter values. These are glass
identification, Haberman’s survival, two spiral problem, lenses,
Balance Scale, iris, breast-cancer-Wisconsin (Bennett & Mangasar-
ian, 1992; Mangasarian, Setiono, & Wolberg, 1990; Mangasarian &
Wolberg, 1990; Wolberg &Mangasarian, 1990), E.coli, yeast, wine,
ionosphere, hill-valley, pen-digits, image segmentation, and trans-
fusion (Yeh, Yang, & Ting, 2008) data sets (Frank &Asuncion, 2010).
Classification performances, training and test times of L-GCNN are
compared with that of standard one. Results are summarized in
Table 1.

Table 1
Summary of L-GCNN’s results.

Initial σ Decrease in training time (%) Increase in classification
performance (%)

Maximum Average Maximum Average

10 99 51.6 60 7.84
0.67 99 16 57 4
0.3 89 30 0 0

Initial values of smoothing parameters are chosen as 10, 0.67
and 0.3. When the initial smoothing parameter is chosen as 10,
maximum 99% and average 51.6% decrease in training time and
maximum 60% and average 7.84% increase in classification perfor-
mance are obtained with L-GCNN. Maximum 99% and average 16%
decrease in training time and maximum 57% and average 4% in-
crease in classification performance are obtained when the initial
smoothing parameter is 0.67 and maximum 89% and average 30%
decrease in training time and the same classification performances
are obtained when it is 0.3.

According to the test results, this training method can be
considered as a solution for convergence time of standard GCNN.

2. Maximum likelihood estimation for logistic regression

Similarly, least-squares estimation (LSE), and maximum like-
lihood estimation (MLE) are statistical methods for parameter
estimation. Likelihood function L (w|o) is the probability density
function that fits the target model best. MLE developed by R.A.
Fisher in the 1920s was based on maximization of likelihood func-
tion by searching the parameter space. Parameter estimation starts
with definition of log-likelihood function (log L (w|o)). Since log-
likelihood function is differentiable, if there is an appropriate pa-
rameter vector, the derivative of likelihood equation given in (4)
will be obtained, where i is an indice of parameter numbers,w and
o denote weight and output, respectively. The likelihood equation
requires two conditions given in (4) and (5) to guarantee max-
imization of L (w|o) and existence of such a parameter vector.
The shape of function is checked for maximization control. Log-
likelihood function should be convex near the estimated param-
eter vector. This can be controlled with the second derivative of
function, given in (5). This second derivative should be negative at
estimated parameter vector (Myung, 2003).

∂ log L (w|o)
∂wi

= 0 (4)

∂2 log L (w|o)
∂w2

i
< 0. (5)

If probability density function is non-linear and there are many
parameters, optimization algorithms will be used for maximizing
log-likelihood to obtain optimal parameters. Optimization algo-
rithms use smaller search spaces and iterations. In each iteration,
previous iteration result is taken into consideration (Myung, 2003).

An important difference between LSE and MLE is the conver-
gence of different estimated values, especially when data sets are
not normally distributed. On the corresponding data sets, if the
probability density function can be defined, MLE will provide a
better solution. Under the same training conditions the same opti-
mized parameter values are obtained from LSE andMLE. They pro-
vide normal distribution with a constant variance, only if data are
independent of each other (Myung, 2003).

In Ng (2013), least squares regression is describedwith the help
of maximum likelihood estimators under a set of assumptions.
In this description, classification is defined by two assumptions
as given in (6). These two assumptions can be combined into
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