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a b s t r a c t

This paper presents a vector quantization process that can be applied online to a stream of inputs. It
enables to set up and maintain a dynamical representation of the current information in the stream as a
topology preserving graph of prototypical values, as well as a velocity field. The algorithm relies on the
formulation of the accuracy of the quantization process, that allows for both the updating of the number
of prototypes according to the stream evolution and the stabilization of the representation from which
velocities can be extracted. A video processing application is presented.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Our every day life interaction with the world we are immersed
in relies on our ability to recognize people, objects, places, from the
flow of analogical signals provided by our sensors. In other words,
our brain is able to process dynamical, multi-modal and continu-
ous perceptive signals in a way that enables us to be aware of our
reality through themental handling of symbols, which are the con-
stitutive discrete elements involved in our cognition. Bridging the
gap between the discrete, serial and predicative nature of ourmind
(including speech) and the analogous, high-dimensional, complex
and of course unlabeled information provided by theworld, is done
effortlessly by each of us. Nevertheless, endowing a machine with
the least of such skills proved to be a great challenge for computer
scientists since the earliest days of artificial intelligence and ma-
chine learning. Indeed, automated manipulation of logical predi-
cates hardlymeets signal processing techniques, even if both fields
provide advanced computing paradigms. This difficulty is referred
to as the anchoring problem (Coradeschi & Saffiotti, 2003), that ev-
ery robotic engineer has experienced when s/he spends hours in
adjusting, in vain, the thresholds of crucial decision-making parts
of his/her control system.

In the field of machine learning and statistics, vector quantiza-
tion techniques offer a battery of tools for representing the distri-
bution of vectors sampled according to some unknown and often
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continuous, process. This representation relies on a finite number
of prototypical vectors, determined according to the statistics of
the population of the sampled vectors. A straightforward proce-
dure introduced in Martinez and Schulten (1994) enables to con-
nect the obtained prototypes in order to form a graph that reflects
the topology of the input vector distribution given by the process.
Considering this graph as a full symbolic representation of this in-
put is certainly improper, but the fact remains that a graph is a dis-
crete representation of the input process that delivers the vectors,
for which graph-related algorithms can be used. This is why we
consider the topology preserving vector quantization techniques
as relevant approaches to the anchoring problem. The work pre-
sented in this paper is a step in this direction. An overview of clus-
tering approaches for artificial intelligence can be found in Qin and
Suganthan (2004) and a focus on topology preserving techniques
in García-Rodríguez et al. (2012).

Most approaches of vector quantization consider stationary in-
put distributions, but modifications of the algorithms have been
proposed in order to cope with non-stationarity (Frezza-Buet,
2008; Fritzke, 1997). This consists in designing algorithms which
are robust to changes in the input statistics, so that they keep
on representing the instantaneous properties of the input while it
changes. In this paper, we aim at going one step further and rep-
resent (by a topology preserving vector quantization) the current
input statistics staying sensitive to their variations. Indeed, such
temporal variations of the input may contain the relevant cues for
understanding the semantics of the input. This is for example the
motivation for the approaches based on optical flows in computer
vision (Chao, Gu, & Napolitano, 2014). In the approach presented
in this paper, as opposed to other vector quantization methods for
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non stationary data, temporal variations are represented by a ve-
locity field built and updated over the graph representing the data
distribution.

The paper is organized as follows. In Section 2 are introduced
general notations, as well as a way to model the input data. This
model allows for a quantitative interpretation of the parameters
of our algorithm. Fitting a real data flow to this model provides
the semantics for the most central parameters of our approach
and thus rationalizes the settings. This section also introduces
the Voronoï contribution that measures the quality of some vector
quantization process. Relying on this measure to control the
quantization process is a contribution of this paper and this is
what Section 3 addresses. Section 4 presents a new version of our
previous GNG-T algorithm (Frezza-Buet, 2008). The explicit use
of Voronoï contribution and a real semantics of the parameters
enables us to reformulate this previous work into a much more
stable algorithm. Because of this significant improvement, GNG-
T can be decorated with few additional instructions in order to
capture the velocity field of the input distribution, as Section 5
shows. Section 6 presents experiments on 2D non-stationary
distributions of pixels, taken from a video as well as a comparison
with optical flows. Section 7 concludes.

Last, let us underline that throughout the paper, all algorithms
are provided, as well as links to videos and code available from our
web site. This allows for reproducing our experiments as well as
using GNG-T for addressing broader application domains.

2. Notations and properties

One crucial problem in vector quantization is choosing the
appropriate number of prototypes. In case of the clustering into a
previously known number of clusters, as for example for clustering
digits into ten groups, the appropriate number of prototypes is
induced by the problem itself. However, when quantization aims
at summarizing a continuous distribution by a discrete set of
prototypes, one has to determine the number of prototypes to
be used. This choice is even more delicate when non stationary
distributions are concerned, since this number of prototypes needs
to be adjusted while the distribution changes, in order to be kept
permanently appropriate. After all, the meaning of appropriate
is the core question when the number of prototypes has to be
determined.

Besides particularities in their learning rules, the approaches
in the Growing Neural Gas (GNG) literature implement a strategy
for controlling the number of prototypes. However, this process
mainly relies on empirically tuned threshold values, except for
RGNG (Qin & Suganthan, 2004) that is based on a minimum
description length criterion and for approaches like HOGNG (Cao
& Suganthan, 2003) for which GNG participates in a supervised
learning where the empirical risk is available for being used as a
stopping criterion. For the approaches involving a classical GNG,
as it was done recently for character recognition in Fujita (2013),
the number of prototypes grows until it reaches a preset maximal
value or until the error accumulated for each prototype, when
the whole data set is presented, is below a predefined threshold.
As the point is to find the suitable number of prototypes for a
fixed data set, increasing the number of prototypes until some
error-based stopping criterion is met remains feasible and then
the process stops. Somemodified GNG, like GANG (Cselényi, 2005)
or SGNG (Tence, Gaubert, Soler, De Loor, & Buche, 2013) applies
a similar strategy. SGONG (Stergiopoulou & Papamarkos, 2009)
slightly differs since the number of samples for which a given
prototype wins is used. The network grows until this number
is lower than some threshold. Nevertheless, for the application
to hand gesture recognition, the authors also adopt a strategy
consisting of using 33 prototypes, from empirical considerations.

Last, let us mention GWR (Marsland, Shapiro, & Nehmzow, 2002)
that adds a habituation criterion to the error-based criterion. Both
are driven by thresholds. Moreover, the habituation calculation
makes sense for stationary distributions only.

For our GNG-based approach as well, a strategy for controlling
the number of prototypes is proposed. It has the advantage of en-
abling the user to define a priori, by setting a scalar parameter,
what an appropriate number of prototypes actually means, accord-
ing to how s/he intends to use the data. Once defined, this parame-
ter is kept constant even when the data distribution changes, as
opposed to the previous methods considering stationary inputs
only. As forthcoming Section 3 shows, the meaning of appropriate
relies on two concepts, introduced beforehand in this section. The
first one (Section 2.1) is a view of the data as a rejection sampling
process, applied at each time since the data is non stationary. The
second one (Section 2.2) is the Voronoï contribution, that is a mea-
sure used in the control strategy introduced in Section 3. The rele-
vance of this latter concept is shown by empirical measures, given
at the end of Section 2.2.

2.1. Modeling a non stationary input

Let us denote by X a bounded input set from which input
samples ξ ∈ X are drawn. Let us model the variation of input
samples concentration over X as a density function p ∈ [0, 1]X ,
where BA is the set of functions from A to B. Note that density p is
not a probability density since it is not required to be normalized.
Let us denote by a ∼ UA a value a sampled according to a uniform
distribution over A. Let us define a sample set SNp ⊂ X,N ∈ N a
finite set of samples obtained according to p by Algorithm 1.

Algorithm 1 Computation of SNp .

1: SNp ← ∅ // Start with an empty set.
2: for i← 1 to N do
3: // Let us consider N attempts to add a sample in SNp .
4: ξ ∼ UX , u ∼ U[0,1[ // Choose a random position ξ .
5: if u < p (ξ) then
6: // The test will pass with a probability p (ξ).
7: SNp ← SNp ∪ {ξ} // ξ is kept (i.e. not rejected).
8: end if
9: end for

10: return SNp

Such a procedure is close to a rejection sampling of the prob-
ability density related to p (Andrieu, de Freitas, Doucet, & Jordan,
2003). The actual number of samples in SNp depends on both p and
N , which will be discussed further.

A non stationary input is modeled here as a sequence of sample
sets. Let pt ∈ [0, 1]X be a non stationary density and N t some ar-
bitrary sampling number at time t . A non stationary input stream
is defined throughout the paper as the sequence


SN

t

pt


t∈T

. Let us
stress that the input stream defined by this way is discrete, since
time instants are organized as a sequence and each SN

t

pt is a finite
set of samples.

2.2. Voronoï contribution

Vector quantization basically consists in summarizing a distri-
bution by a finite set of representative values, usually called the
prototypes. The prototypes are representative since they are cho-
sen in order to minimize a distortion function. Classical defini-
tions of vector quantization concepts can be found in Patra (2011),
where densities of probability are concerned. Let us recall here
these definitions in the restricted case of a finite input sample set
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