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a b s t r a c t

A dynamic neural network (DNN) based robust observer for uncertain nonlinear systems is developed.
The observer structure consists of a DNN to estimate the system dynamics on-line, a dynamic filter to
estimate the unmeasurable state and a sliding mode feedback term to account for modeling errors and
exogenous disturbances. The observed states are proven to asymptotically converge to the systemstates of
high-order uncertain nonlinear systems through Lyapunov-based analysis. Simulations and experiments
on a two-link robot manipulator are performed to show the effectiveness of the proposed method in
comparison to several other state estimation methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Full state feedback is not available in many practical systems.
In the absence of sensors, the requirement of full-state feedback
for the controller is typically fulfilled by using ad hoc numerical
differentiation techniques, which are sensitive to noise, leading to
unusable state estimates. Observers are an alternative method to
numerical methods. Several nonlinear observers are available in
literature to estimate unmeasurable states. For instance, sliding
mode observers were designed for nonlinear systems in Canudas
De Wit and Slotine (1991), Mohamed, Karim, and Safya (2010)
and Slotine, Hedrick, and Misawa (1986) based on an assumption
that exact model knowledge of the dynamics is available. Model-
based observers are also developed in Lee and Khalil (1997) and
Shin and Lee (1999) which require a high-gain to guarantee
estimation error regulation. The observers introduced in Astolfi,
Ortega, and Venkatraman (2010) and Lotfi and Namvar (2010)
are both applied for Lagrangian dynamic systems to estimate the

✩ This research is supported in part by NSF award numbers 0547448,
0901491, 1161260, and 1217908. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the sponsoring agency.
∗ Corresponding author. Tel.: +84 979721484.

E-mail addresses: huyendtt214@gmail.com, huyentdinh@utc.edu.vn
(H.T. Dinh), rkamalapurkar@ufl.edu (R. Kamalapurkar), sbhasin@ee.iitd.ac.in
(S. Bhasin), wdixon@ufl.edu (W.E. Dixon).

velocity. Global exponential convergence to the true velocity is
obtained in Astolfi et al. (2010), and a global asymptotic result
is proven in Lotfi and Namvar (2010). The result in Astolfi et al.
(2010) is based on the immersion and invariance approach to
reconstruct the unmeasurable state. The use of this approach
requires the solution of a partial differential equation. Given the
challenge of finding such a solution, an approximation technique
is employed that introduces error in the estimation, the effects
of which are dominated by high-gain terms introduced in the
observer dynamics. In Lotfi and Namvar (2010), the system
dynamicsmust be expressed in a non-minimalmodel and feedback
from force sensors are used to develop a velocity estimate. In
Adhyaru (2012), a constrained optimal observer is developed for a
nonlinear systemunder the assumption of exactmodel knowledge,
where a nonquadratic performance cost function is used to impose
magnitude constraints on an observer gain matrix.

The design of robust observers for uncertain nonlinear systems
is considered in Davila, Fridman, and Levant (2005), Dawson,
Qu, and Carroll (1992), Vasiljevic and Khalil (2008) and Xian, de
Queiroz, Dawson, and McIntyre (2004). In Davila et al. (2005), a
second-order sliding mode observer for uncertain systems using
a super-twisting algorithm is developed, where a nominal model
of the system is assumed to be available and estimation errors
are proven to converge in finite-time to a bounded set around the
origin. In Dawson et al. (1992), the developed observer guarantees
that the state estimates exponentially converge to the actual
state, if there exists a vector function satisfying a complex set of
matching conditions. An asymptotic velocity observer is developed
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in Xian et al. (2004) for general second-order systems; however,
all nonlinear uncertainties in the system are damped out by a
sliding-mode term resulting in high-frequency state estimates. In
Vasiljevic and Khalil (2008), a high-gain derivative estimator is
developed to estimate the derivative(s) of a signal in the presence
of measurement noise. In the absence of noise, the derivative
estimation error asymptotically converges as the observer gain
grows to infinity. In contrast, the result developed in this paper
yields asymptotic convergence with bounded gains.

Neural networks (NN) and fuzzy logic systems provide an
effective approximation method that facilitates new observer
designs, improving and complementing the base of conventional
observer design approaches. For example, the approaches in
Boulkroune, Tadjine, MSaad, and Farza (2008), Choi and Farrell
(1999), Kim and Lewis (1999), Park and Park (2003) and Vargas
and Hemerly (2001) use the universal approximation property
in adaptive observer designs. However, estimation errors in
Boulkroune et al. (2008), Choi and Farrell (1999), Kim and Lewis
(1999), Park and Park (2003) and Vargas and Hemerly (2001) are
only guaranteed to be bounded due to function reconstruction
errors resulting from the NN or fuzzy system.

The challenge to obtain asymptotic estimation stems from
the fact that to robustly account for disturbances, feedback of
the unmeasurable error and its estimate are required. Typically,
feedback of the unmeasurable error is obtained by taking the
derivative of the measurable state and manipulating the resulting
dynamics (e.g., this is the approach used in methods such as Kim
& Lewis, 1999 and Xian et al., 2004). However, such an approach
provides a linear feedback term of the unmeasurable state. Hence,
a slidingmode term could not be simply added to the NN structure
of the result in Kim and Lewis (1999), for example, to yield an
asymptotic result, because it would require the signum of the
unmeasurable state. It is unclear how such a nonlinear function
of the unmeasurable state can be injected in the closed-loop
error system using traditional methods. Likewise, it is not clear
how to simply add an NN-based feedforward estimation of the
nonlinearities in results such as Xian et al. (2004) because of the
need to inject nonlinear functions of the unmeasurable state.

The approach used in this paper circumvents the challenge
of injecting feedback to yield an asymptotic result by using
nonlinear (sliding-mode) feedback of the measurable state, and
then exploiting the recurrent nature of a dynamic neural network
(DNN) structure to inject terms that cancel cross terms associated
with the unmeasurable state. The approach is facilitated by using
the filter structure inspired by Xian et al. (2004) and a novel
stability analysis. The stability analysis is based on the idea of
segregating the nonlinear uncertainties into terms which can be
upper-bounded by constants and termswhich can upper-bounded
by states. The terms upper-bounded by states can be canceled
by the linear feedback of the measurable errors, while the terms
upper-bounded by constants are partially rejected by the sliding
mode feedback (of the measurable state) and partially eliminated
by the novel DNN-based weight update laws.

The contribution of this paper (and its preliminary version in
Dinh, Kamalapurkar, Bhasin, & Dixon, 2011) is that the observer
is designed for Nth order uncertain nonlinear systems, where the
output of the Nth order system is assumed to be measurable up to
N − 1 derivatives. The on-line approximation of the unmeasurable
uncertain nonlinearities via the DNN structure should heuristically
improve the performance of methods that only use high-gain
feedback. Asymptotic convergence of the estimated states to
the real states is proven using a Lyapunov-based analysis. The
developed observer can be used separately from the controller
even if the relative degree between the control input and the
output is arbitrary. Simulation and experiment results on a two-
link robot manipulator indicate the effectiveness of the proposed

observer when compared with the standard numerical central
differentiation algorithm, along with the high-gain observer
proposed in Vasiljevic and Khalil (2008) and the observer in Xian
et al. (2004).

2. DNN-based observer development

Consider an Nth order control affine nonlinear system given in
MIMO Brunovsky form as

ẋ1 = x2,
...

ẋN−1 = xN , (1)
ẋN = f (x) + G(x)u + d,

where x =

xT1 xT2 . . . xTN

T
∈ RNn is the generalized state of

the system, u ∈ Rm is the control input, f : RNn
→ Rn, G : RNn

→ Rn×m are unknown continuous functions, d ∈ Rn is an external
disturbance. The following assumptions about the system in (1)
will be utilized in the observer development.

Assumption 1. The state x is bounded, i.e., xi ∈ L∞, i = 1,
2, . . . ,N , and the state x1 is measurable up to and including the
N − 1th derivative, i.e. xi, i = 1, 2, . . . ,N − 1, are measurable.

The states xi, i = 1, 2, . . . ,N − 1 are available from sensor
feedback. However, the higher order state xN is not used by
the subsequent development because it is not typically included
as available sensor measurements. The subsequent development
does not require feedback of the state xN . Motivation of this design
choice is that it reduces the need for an additional sensor or
additional signal processing that is typically not included in the
stability analysis. For example, to control the trajectory of robotic
manipulator, many results have been developed that only require
output feedback (e.g., for the second order system, only position
feedback is required). Such results are motivated by the facts that
typical robotic systems do not include tachometers and numerical
derivatives introduce additional noise. If sufficient sensing of xN
is available, then the developed observer could be simplified (e.g.,
the subsequently desired dynamic filter could be eliminated) or an
alternate method could be used.

Assumption 2. The unknown functions f and G, and the control
input u are C1, and u, u̇ ∈ L∞.

Assumption 3. The disturbance d is differentiable, and d, ḋ ∈ L∞.

The universal approximation property states that given any
continuous function F : S → Rn, where S is a compact set, there
exist ideal weights such that the output of the NN, F̂ approximates
F to an arbitrary accuracy (Hornick, 1991). Hence, the unknown
functions f andG in (1) can be replaced bymulti-layer NNs (MLNN)
as

f (x) = W T
f σf


N
j=1

V T
fj xj


+ εf (x) ,

gi(x) = W T
giσgi


N
j=1

V T
gijxj


+ εgi (x) , (2)

where Wf ∈ RLf +1×n, Vfj ∈ Rn×Lf are unknown ideal constant
weight matrices of the MLNN having Lf hidden layer neurons, gi is
the ith column of the matrix G, Wgi ∈ RLgi+1×n, Vgij ∈ Rn×Lgi are
unknown ideal constant weight matrices of the MLNN having Lgi
hidden layer neurons, i = 1 . . .m, j = 1, 2, . . . ,N, σf : RNn

→
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