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a b s t r a c t

Subsampling is used to generate bagging ensembles that are accurate and robust to class-label noise. The
effect of using smaller bootstrap samples to train the base learners is to make the ensemble more
diverse. As a result, the classification margins tend to decrease. In spite of having small margins, these
ensembles can be robust to class-label noise. The validity of these observations is illustrated in a wide
range of synthetic and real-world classification tasks. In the problems investigated, subsampling
significantly outperforms standard bagging for different amounts of class-label noise. By contrast, the
effectiveness of subsampling in random forest is problem dependent. In these types of ensembles the
best overall accuracy is obtained when the random trees are built on bootstrap samples of the same size
as the original training data. Nevertheless, subsampling becomes more effective as the amount of class-
label noise increases.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The success of large margin classifiers [46,33,21,20] has pro-
mpted many researchers to posit that large margins are a key
feature in explaining the effectiveness of these methods. In the
context of ensembles, the margin is defined as the weighted sum of
votes for the correct class minus the weighted sum of votes for the
most voted class other than the correct one. The effectiveness of
boosting has been ascribed to the fact that it produces large margins
on the training data. The margins increase as the ensemble grows
because of boosting's progressive focus on instances that are
difficult to classify [43]. Nonetheless, several empirical studies put
in doubt the general validity of this view [9,35]. Furthermore, efforts
to directly optimize the margin (or the minimum margin) have met
with mixed results [40,41]. In contrast to boosting, bagging [7],
random forest [11] and class-switching [10,31] ensembles do not
tend to increase the classification margins. In this paper we show
that subsampling can be used to generate bagging ensembles that
are robust to class-label noise in spite of having small margins. By
contrast, the effectiveness of subsampling in random forest is
strongly problem dependent. Nevertheless, for both types of
ensembles, subsampling becomes more effective as the amount of
class-label noise increases.

As discussed in [53,18], class-label noise is generally more
harmful for classification accuracy than noise in the feature values.
Therefore, it is important to design classifiers that are robust to
errors in the class labels of the training instances. The

deterioration in performance caused by this type of noise is mainly
due to an increase of the variance of the classifiers [36,1,39].
Bagging is robust to class-label noise because it is a variance
reduction technique. As a result of its adaptive nature, boosting
reduces the classification bias as well as the variance [4,48].
However, the excessive emphasis on incorrectly labeled examples
makes standard boosting algorithms ill-suited for handling this
type of noise. Nonetheless, it is possible to design robust versions
of boosting to address this shortcoming [40,20].

A bagging ensemble is a collection of classifiers whose predictions
are combined by majority voting. Each of the classifiers in the
ensemble is built on a different bootstrap sample from the original
training data. In standard bagging, bootstrap samples of the same size
of the original training set are used to build the individual classifiers.
However, this prescription need not be optimal. Several empirical
studies have shown that the generalization capacity of bagging can
significantly improve when smaller bootstrap samples are used
[24,52,32]. Subsampling generally makes bagging more robust to label
noise [42]. The key to this improvement is how smaller sampling
ratios affect isolated instances. By an isolated instance we mean one
that is located in a region where the majority of neighboring instances
belong to a different class. Assume a sampling ratio such that the
bootstrap samples used to build the individual classifiers contain less
than 50% of the original training instances. This means that each
instance is present in less than half of the ensemble classifiers.
Therefore, the decision on the label of a given instance is dominated
by classifiers trained on bootstrap samples that do not contain that
particular instance [24,32]. If the instance in question is an isolated
one, it is likely to receive the class label of its neighbors (i.e. the local

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.12.086
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.

Neurocomputing 160 (2015) 18–33

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.12.086
http://dx.doi.org/10.1016/j.neucom.2014.12.086
http://dx.doi.org/10.1016/j.neucom.2014.12.086
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.086&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.086&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.086&domain=pdf
http://dx.doi.org/10.1016/j.neucom.2014.12.086


majority class). If the noise is uniform, most of the incorrectly labeled
instances are far from the classification boundaries. They can therefore
be viewed as isolated instances. In such cases, using smaller sampling
ratios reduces the influence of these isolated noisy instances. Conse-
quently, the ensemble becomes more robust.

In summary, this paper presents a comprehensive empirical
assessment of the accuracy and robustness of bagging and random
forest ensembles as a function of the bootstrap sampling ratio. This
study extends our previous work [42] including more datasets,
algorithms and experiments. In addition, we illustrate how small
margin ensembles can be resilient to class-label noise.

The paper is organized as follows: Section 2 reviews previous
work on label noise, focusing on classification ensembles. Section 3
is devoted to exploring the relation between margin and accuracy
for different bootstrap sampling ratios and noise levels. In Section 4
we present the results of an extensive empirical evaluation of the
performance of bagging and random forest ensembles built using
subsampling. The experiments are carried out in a wide range of
classification tasks with different amounts of class-label noise.
Finally, the conclusions of this investigation are summarized in
Section 5.

2. Related work

Poor data quality and contamination by noise are unavoidable
in many real-world classification problems [18,53]. This has a
strong potential to mislead the learning algorithms used for
automatic induction from these data. Two types of noise can be
present in these problems: class-label noise and polluted feature
values [18,53]. Class-label noise is the consequence of incorrect
manual labeling, missing information or failures in the data mea-
suring process. Feature noise is often the result of a faulty data
gathering process [18,53]. Class-label noise typically has a more
pronounced misleading effect than feature noise, except when
most of the feature values are corrupted [53]. Frénay and Verley-
sen [18] identify three types of label noise, characterized by
different statistical models: The Noisy Completely at Random
Model (NCAR), in which the probability of a class-label error is
independent of the values of the features, the actual class of the
instance and the noise rate. To simulate this type of noise the class
labels of randomly selected instances are changed to a different
class label, also at random. The second model is Noisy at Random
(NAR). Labelling errors in this model are assumed to occur with a
different probability for each class. NAR is useful to characterize
tasks in which some classes are more susceptible to mislabeling
than others. The third model is Noisy Not at Random (NNAR). In
this case, the probability of an error depends on the actual class
label and on the values of the features. This model should be used
when some regions of the feature space, such as boundaries or
sparse regions, are more prone to noise than others. Noise can be
handled in a preprocessing step (data cleansing) or during the
learning process, assuming that the algorithms used for induction
from the contaminated data are robust [18].

2.1. Data cleansing

To mitigate their harmful effects, noise and outliers can be
eliminated in a preprocessing step, before the selected learning
algorithm is applied. For instance, it is possible to use statistical
models or clustering-based methods to detect outliers. Patterns
and association rules can also be used in the cleansing process
[27]. An example of a pattern-based data cleansing algorithm is
described in [45,44]. In this method, local SVM's are used to
identify and remove instances that are suspected to be noise. For
each particular training instance, k-NN is applied to locate nearby

instances. A SVM is then trained on these instances to find the
optimal separating hyperplane in that neighborhood. If the label
predicted by this locally trained SVM does not coincide with the
actual label, the instance is identified as noisy and discarded. This
cleansing method has been tested on real and artificial datasets,
where it showed improvements over k-NN. In [51], noisy instances
are removed based on wrappers of different classification meth-
ods. In this study, the best results were obtained by removing or
cleaning instances based on the prediction of a SVM built with the
rest of the training data. Noisy instances are often included in the
set of support vectors by a SVM classifier. Based on this observa-
tion, Fefilatyev et al. [16] propose to manually remove support
vectors that are identified as noise by an expert. Then, a new SVM
is built on the cleansed dataset. This process is iterated until no
more support vectors are identified as noisy instances.

2.2. Robust learning algorithms

Another strategy to deal with noise is the design of robust
learning algorithms. For instance, pruning is used in decision trees
to reduce overfitting: the presence of noise tends to increase the
size of the decision trees induced from the contaminated training
data. Pruning is thus an effective way to improve the robustness of
decision trees [12,13]. Another robustifying strategy is to explicitly
incorporate in the learning algorithm the fact that the values of
the features and the class labels can be polluted by noise. This
strategy is adopted in the construction of Credal Decision Trees
[28]. These types of trees are grown using the Imprecise Info-Gain
Ratio (IIGR) as a splitting criterion. In this method the values of the
features and class labels are approximated using probabilities and
uncertainty measures.

It is also possible to adapt the algorithms used to build Support
Vector Machines to improve their robustness to class-label noise.
For instance, in [47] the hinge loss is replaced by a related loss
function that takes into account the amount of noise in the data.
With this loss function the optimization problem becomes non-
convex. Heuristic optimization methods are then used to search
for the global minimum of this non-convex problem. Promising
results were obtained by this robust SVM in problems with
asymmetric class noise (NAR model). A drawback of this method
is that it is necessary to estimate the amount of noise in the data.
Another robust version of SVM, called P-SVM (Probabilistic SVM) is
proposed in [37] to classify magnetic resonance medical images.
The P-SVM takes as inputs not only class labels but also class
probability estimates. These probabilities are used to estimate the
confidence on the labeling of each instance. The lower the
confidence on the label, the lower the weight of that instance in
the learning process. A practical limitation of this method is that
one needs both qualitative (class labels) and quantitative (class
posterior probabilities) information on the classes.

The problem of induction from noisy data has also been
extensively addressed in the area of ensemble learning. In [2],
Ali and Pazzani analyze the behavior of multiple classifier systems
in the presence class-label noise. They observed that the improve-
ments of the ensemble with respect to a single learner are
generally smaller when the training data are contaminated with
class-label noise. However, the reduction is not uniform and
depends on the type of ensemble used.

Noise is not always harmful. In fact, noise injection is a
powerful regularization mechanism that has the potential of
improving the generalization capacity and robustness of predic-
tion systems. In particular, randomization is used to build diverse
ensembles that have good generalization capacity [4,38,10,15,11,
34,36,31,29,17,30,49]. Furthermore, randomized ensembles, such
as bagging and random forests, have been shown to be robust
classifiers. By contrast, adaptive ensembles, such as boosting, are
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