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a b s t r a c t

Machine learning algorithms are increasingly being applied in security-related tasks such as spam and
malware detection, although their security properties against deliberate attacks have not yet been widely
understood. Intelligent and adaptive attackers may indeed exploit specific vulnerabilities exposed by
machine learning techniques to violate system security. Being robust to adversarial data manipulation is
thus an important, additional requirement for machine learning algorithms to successfully operate in
adversarial settings. In this work, we evaluate the security of Support Vector Machines (SVMs) to well-
crafted, adversarial label noise attacks. In particular, we consider an attacker that aims to maximize the
SVM's classification error by flipping a number of labels in the training data. We formalize a corresponding
optimal attack strategy, and solve it by means of heuristic approaches to keep the computational complexity
tractable. We report an extensive experimental analysis on the effectiveness of the considered attacks
against linear and non-linear SVMs, both on synthetic and real-world datasets. We finally argue that our
approach can also provide useful insights for developing more secure SVM learning algorithms, and also
novel techniques in a number of related research areas, such as semi-supervised and active learning.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning and pattern recognition techniques are increas-
ingly being adopted in security applications like spam, intrusion and
malware detection, despite their security to adversarial attacks has
not yet been deeply understood. In adversarial settings, indeed,
intelligent and adaptive attackers may carefully target the machine
learning components of a system to compromise its security. Several
distinct attack scenarios have been considered in a recent field of
study, known as adversarial machine learning [1–4]. For instance, it
has been shown that it is possible to gradually poison a spam filter, an
intrusion detection system, and even a biometric verification system
(in general, a classification algorithm) by exploiting update mechan-
isms that enable the adversary to manipulate some of the training
data [5–13]; and that the detection of malicious samples by linear
and even some classes of non-linear classifiers can be evaded with
few targeted manipulations that reflect a proper change in their
feature values [14,13,15–17]. Recently, poisoning and evasion attacks
against clustering algorithms have also been formalized to show that
malware clustering approaches can be significantly vulnerable to
well-crafted attacks [18,19].

Research in adversarial learning not only investigates the security
properties of learning algorithms against well-crafted attacks, but it
also focuses on the development of more secure learning algo-
rithms. For evasion attacks, this has been mainly achieved by expli-
citly embedding knowledge into the learning algorithm of the
possible data manipulation that can be performed by the attacker,
e.g., using game-theoretical models for classification [15,20–22],
probabilistic models of the data distribution drift under attack
[23,24], and even multiple classifier systems [25–27]. Poisoning
attacks and manipulation of the training data have been differently
countered with data sanitization (i.e., a form of outlier detection)
[5,6,28], multiple classifier systems [29], and robust statistics [7].
Robust statistics have also been exploited to formally show that the
influence function of SVM-like algorithms can be bounded under
certain conditions [30]; e.g., if the kernel is bounded. This ensures
some degree of robustness against small perturbations of training
data, and it may be thus desirable also to improve the security of
learning algorithms against poisoning.

In this work, we investigate the vulnerability of SVMs to a specific
kind of training data manipulation, i.e., worst-case label noise. This
can be regarded as a carefully crafted attack in which the labels of a
subset of the training data are flipped to maximize the SVM's
classification error. While stochastic label noise has been widely
studied in the machine learning literature, to account for different
kinds of potential labeling errors in the training data [31,32], only a
few works have considered adversarial, worst-case label noise, either
from a more theoretical [33] or practical perspective [34,35]. In
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[31,33] the impact of stochastic and adversarial label noise on
the classification error have been theoretically analyzed under the
probably approximately correct learning model, deriving lower bounds
on the classification error as a function of the fraction of flipped labels
η; in particular, the test error can be shown to be lower bounded by
η=ð1�ηÞ and 2η for stochastic and adversarial label noise, respectively.
In recent work [34,35], instead, we have focused on deriving more
practical attack strategies to maximize the test error of an SVM given
a maximum number of allowed label flips in the training data. Since
finding the worst label flips is generally computationally demanding,
we have devised suitable heuristics to find approximate solutions
efficiently. To our knowledge, these are the only works devoted to
understanding how SVMs can be affected by adversarial label noise.

From a more practical viewpoint, the problem is of interest as
attackers may concretely have access and change some of the
training labels in a number of cases. For instance, if feedback from
end-users is exploited to label data and update the system, as in
collaborative spam filtering, an attacker may have access to an
authorized account (e.g., an email account protected by the same
anti-spam filter), and manipulate the labels assigned to her samples.
In other cases, a system may even ask directly to users to validate its
decisions on some submitted samples, and use them to update the
classifier (see, e.g., PDFRate,1 an online tool for detecting PDF
malware [36]). The practical relevance of poisoning attacks has also
been recently discussed in the context of the detection of malicious
crowdsourcing websites that connect paying users with workers
willing to carry out malicious campaigns (e.g., spam campaigns in
social networks) — a recent phenomenon referred to as crowdturfing.
In fact, administrators of crowdturfing sites can intentionally pollute
the training data used to learn classifiers, as it comes from their
websites, thus being able to launch poisoning attacks [37].

In this paper, we extend our work on adversarial label noise
against SVMs [34,35] by improving our previously defined attacks
(Sections 3.1 and 3.3), and by proposing two novel heuristic appro-
aches. One has been inspired from previous work on SVM poisoning
[12] and incremental learning [38,39], and makes use of a continuous
relaxation of the label values to greedily maximize the SVM's test
error through gradient ascent (Section 3.2). The other exploits a
breadth first search to greedily construct sets of candidate label flips
that are correlated in their effect on the test error (Section 3.4). As in
[34,35], we aim at analyzing the maximum performance degradation
incurred by an SVM under adversarial label noise, to assess whether
these attacks can be considered a relevant threat. We thus assume
that the attacker has perfect knowledge of the attacked system and of
the training data, and left the investigation on how to develop such
attacks having limited knowledge of the training data to future work.
We further assume that the adversary incurs the same cost for
flipping each label, independently from the corresponding data point.
We demonstrate the effectiveness of the proposed approaches by
reporting experiments on synthetic and real-world datasets (Section
4). We conclude in Section 5 with a discussion on the contributions of
our work, its limitations, and future research, also related to the
application of the proposed techniques to other fields, including semi-
supervised and active learning.

2. Support vector machines and notation

We revisit here structural risk minimization and SVM learning,
and introduce the framework that will be used to motivate our
attack strategies for adversarial label noise.

In risk minimization, the goal is to find a hypothesis f : X-Y
that represents an unknown relationship between an input X and

an output space Y, captured by a probability measure P. Given a
non-negative loss function ℓ : Y � Y-R assessing the error
between the prediction ŷ provided by f and the true output y,
we can define the optimal hypothesis f ⋆ as the one that minimizes
the expected risk Rðf ; PÞ ¼ Eðx;yÞ � P ½ℓðf ðxÞ; yÞ� over the hypothesis
space F , i.e., f ⋆ ¼ arg minf AFRðf ; PÞ. Although P is not usually
known, and thus f ⋆ cannot be computed directly, a set Dtr ¼
fðxi; yiÞgni ¼ 1 of i.i.d. samples drawn from P are often available. In
these cases a learning algorithm L can be used to find a suitable
hypothesis. According to structural risk minimization [40], the
learner L minimizes a sum of a regularizer and the empirical risk
over the data:

LðDtrÞ ¼ arg min
f AF

Ω fð ÞþC � R̂ f ;Dtrð Þ
h i

; ð1Þ

where the regularizer Ω fð Þ is used to penalize excessive hypothesis
complexity and avoid overfitting, the empirical risk R̂ f ;Dtrð Þ is
given by ð1=nÞPn

i ¼ 1 ℓ f ðxiÞ; yi
� �

, and C40 is a parameter that
controls the trade-off between minimizing the empirical loss and
the complexity of the hypothesis.

The SVM is an example of a binary linear classifier developed
according to the aforementioned principle. It makes predictions in
Y ¼ f�1; þ1g based on the sign of its real-valued discriminant
function f ðxÞ ¼w>xþb; i.e., x is classified as positive if f ðxÞZ0,
and negative otherwise. The SVM uses the hinge loss ℓ f ðxÞ; yð Þ ¼
max 0;1�yf ðxÞð Þ as a convex surrogate loss function, and a quad-
ratic regularizer onw, i.e., Ω fð Þ ¼ 1

2w
>w. Thus, SVM learning can be

formulated according to Eq. (1) as the following convex quadratic
programming problem:

min
w;b

1
2
w>wþC

Xn

i ¼ 1
max 0;1�yif ðxiÞ

� �
: ð2Þ

An interesting property of SVMs arises from their dual for-
mulation, which only requires computing inner products between
samples during training and classification, thus avoiding the need
of an explicit feature representation. Accordingly, non-linear deci-
sion functions in the input space can be learned using kernels, i.e.,
inner products in implicitly mapped feature spaces. In this case,
the SVM's decision function is given as f ðxÞ ¼ Pn

i ¼ 1 αiyikðx; xiÞþb,
where kðx; zÞ ¼ ϕðxÞ>ϕðzÞ is the kernel function, and ϕ the implicit
mapping. The SVM's dual parameters ðα; bÞ are found by solving
the dual problem:

min
0rαrC

1
2 α

>Qα�1>α s:t: y>α¼ 0; ð3Þ

where Q ¼ yy>○K is the label-annotated version of the (training)
kernel matrix K. The bias b is obtained from the corresponding
Karush–Kuhn–Tucker (KKT) conditions, to satisfy the equality
constraint y>α¼ 0 (see, e.g., [41]).

In this paper, however, we are not only interested in how the
hypothesis is chosen but also how it performs on a second
validation or test dataset Dvd, which may be generally drawn from
a different distribution Q. We thus define the error measure

VLðDtr;DvdÞ ¼ ‖fDtr
‖2þC � R̂ fDtr

;Dvd
� �

; ð4Þ

which implicitly uses fDtr
¼LðDtrÞ. This function evaluates the

structural risk of a hypothesis fDtr
that is trained on Dtr but

evaluated on Dvd, and will form the foundation for our label
flipping approaches to dataset poisoning. Moreover, since we are
only concerned with label flips and their effect on the learner we
use the notation VLðz; yÞ to denote the above error measure when
the datasets differ only in the labels z used for training and y used
for evaluation; i.e., VLðz;yÞ ¼ VLðfðxi; ziÞgfðxi; yiÞgÞ.1 Available at: http://pdfrate.com
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