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a b s t r a c t

In this paper we investigate the usage of regularized correntropy framework for learning of classifiers
from noisy labels. The class label predictors learned by minimizing transitional loss functions are
sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are
equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by
maximizing the correntropy between the predicted labels and the true labels of the training samples,
under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the
predictor parameter to control the complexity of the predictor. The learning problem is formulated by an
objective function considering the parameter regularization and MCC simultaneously. By optimizing the
objective function alternately, we develop a novel predictor learning algorithm. The experiments on two
challenging pattern classification tasks show that it significantly outperforms the machines with
transitional loss functions.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The classification machine design has been a basic problem in the
pattern recognition field. It tries to learn an effective predictor to map
the feature vector of a sample to its class label [1–9]. We study the
supervised multi-class learning problem with L classes. Suppose
we have a training set denoted as D¼ fðxi; yiÞg; i¼ 1;…;N, where
xi ¼ ½xi1;…; xiD�> ARD is the D dimensional feature vector of the i-th
training sample, and yiAf1;…; Lg is the class label of i-th training
sample. Moreover, we also denote the label indicator matrix as
Y ¼ ½Yli�ARL�N , and Yli ¼ 1 if yi ¼ l, and �1 otherwise. We try to
learn L class label predictors ff lθðxÞg; l¼ 1;…; L, for the multi-class
learning problem, where f lθðxÞ is the predictor for the l-th class and θ is
its parameter. Given a sample xi, the output of the l-th predictor is
denoted as f lθðxiÞ, and we further denote the prediction result matrix
as Fθ ¼ ½Fθ li�ARL�N , and Fθ li ¼ f lθðxiÞ. To make the prediction as
precise as possible, the target of predictor learning is to learn
parameter θ, so that the difference between true class labels of the
training samples in Y and the prediction results in Fθ could be
minimized, while keeping the complexity of the predictor as low as
possible. To measure how well the prediction results fit the true class

label indicator, several loss functions LðFθ ;YÞ could be considered to
compare the prediction results in Fθ against the true class labels of the
training samples in Y, such as the 0–1 loss function, the square loss
function, the hinge loss function, and the logistic loss function. We
summarize various loss functions in Table 1.

These loss functions introduced in Table 1 have been used widely
in various learning problems. One common feature of these loss
functions is that a sample-wise loss function is applied to each training
sample equally and then the losses of all the samples are summed up
to obtain the final overall loss. The sample-wise loss functions are
of exactly the same form with the same parameter (if they have
parameters). The basic assumption behind this loss function is that
the training samples are of the same importance. However, due to the
limitation of the sampling technology and noises occurred during the
sampling procedure, there are some noisy and outlying samples in
real-world applications. If we use the transitional loss functions listed
in Table 1, the noisy and outlying training samples will play more
important roles even than the good samples. Thus the predictors
learned by minimizing the transitional loss functions are not robust to
the noisy and outlying training samples, and could bring a high error
rate when applied to the prediction of test samples.

Recently, regularized correntropy framework has been proposed
for robust pattern recognition problems [10–13]. In [14], He et al.
argued that the classical mean square error (MSE) criterion is sensitive
to outliers, and introduced the correntropy to improve the robustness
of the presentation. Moreover, the l1 regularization scheme is imposed
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on the correntropy to learn robust and sparse representations.
Inspired by their work, we propose to use the regularized corren-
tropy as a criterion to compare the prediction results and the true
class labels. We use correntropy to compare the predicted labels
and the true labels, instead of comparing the feature of test sample
and its reconstruction from the training samples in He et al.'s work.
Moreover, an l2 norm regularization is introduced to control the
complexity of the predictor. In this way, the predictor learned by
maximizing the correntropy between prediction results and the
true labels will be robust to the noisy and outlying training samples.
The proposed classification Machine Maximizing the Regularized
CorrEntropy, which is called RegMaxCEM, is supposed to be less
sensitive to outlining samples than those with transitional loss
functions. Yang et al. [15] also proposed to use correntropy to
compare predicted class labels and true labels. However, in their
framework, the target is to learn the class labels of the unlabeled
samples in a transductive semi-supervised manner, while we try to
learn the parameters for the class label predictor in a supervised
manner.

The rest of this paper is structured as follows: in Section 2, we
propose the regularized maximum correntropy machine by construct-
ing an objective function based on the maximum correntropy criterion
(MCC) and developing an expectation- maximization (EM) based
alternative algorithm for its optimization. In Section 3, the proposed
methods are validated by conducting extensive experiments on two
challenging pattern classification tasks. Finally, we give the conclusion
in Section 4.

2. Regularized maximum correntropy machine

In this section we will introduce the classification machine
maximizing the correntropy between the predicted class labels and
the true class labels, while keeping the solution as simple as possible.

2.1. Objective function

To design the predictors f lθðxÞ, we first represent the data
sample x as ~x in the linear space and the kernel space as

~x ¼
x ðlinearÞ;
Kð�; xÞ ðkernelÞ;

(
ð1Þ

where Kð�; xÞ ¼ ½Kðx1; xÞ;…;KðxN ; xÞ�> ARN and Kðxi; xjÞ is a kernel
function between xi and xj. Then a linear predictor f lθðxÞ will be
designed to predict whether the sample belongs to the l-th class as

f lθðxÞ ¼w>
l ~xþbl; l¼ 1;…; L; ð2Þ

where θ¼ fðwl; blÞgLl ¼ 1 is the parameters of the predictors, wlARD

is the linear coefficient vector and blAR is a bias term for the l-th
predictor. The target of predictor designing is to find the optimal
parameters to have the prediction result f lθðxiÞ of the i-th sample to

fit its true class label indicator Yli as well as possible, while keeping
the solution as simple as possible. To this end, we consider the
following two problems simultaneously when designing the
objective function:

Prediction accuracy criterion based on correntropy: To consider the
prediction accuracy, we could learn the predictor para-
meters by minimizing a loss function listed in Table 1 as

min
θ

LðFθ ;YÞ ð3Þ

However, as we mentioned in Section 1, all these loss
functions are applied to all the training samples equally,
which is not robust to the noisy samples and outlying
samples. To handle this problem, instead of minimizing a
loss function to learn the predictor, we use the MCC [10]
framework to learn the predictor by maximizing the
correntropy between the predicted results and the true
labels.

Remark 1. In previous studies, it has been demonstrated that the
MCC is robust to outliers, for example, see [10]. Based on this, we
assume that the predictors developed by MCC should also be
insensitive to outliers.

Correntropy is a generalized similarity measure between two
arbitrary random variables A and B. However, the joint probability
density function of A and B is usually unknown, and only a finite
number of samples of them are available as fðai; biÞgdi ¼ 1. It leads to
the following sample estimator of correntropy:

VðA;BÞ ¼ 1
d

Xd
i ¼ 1

gσðai�biÞ; ð4Þ

where gσðai�biÞ ¼ exp �ðai�biÞ2=2σ2
� �

is a Gaussian kernel func-
tion, and σ is a kernel width parameter. For a learning system, MCC
is defined as

max
ϑ

1
d

Xd
i ¼ 1

gσðai�biÞ ð5Þ

where ϑ is the parameter to be optimized in the criterion so that B
is as correlated to A as possible.

Remark 2. ϑ is usually a parameter to define B, but not the kernel
function parameter σ. In the learning system, we try to learn ϑ so
that with the learned ϑ, B is correlated to A. For example, in this
case, A is the true class label matrix while B is the predicted class
label matrix, and ϑ is the predictor parameter to define B.

To adapt the MCC framework to the predictor learning problem,
we let A be the prediction result matrix Fθ parameterized by θ, and B
be the true class label matrix Y, and we want to find the predictor

Table 1
Various empirical loss functions for predictor learning.

Title Formula of LðFθ ; YÞ Notes

0–1 loss
P

i;lI½Fθ liYlio0�, where Ið�Þ is the indicator function and Ið�Þ ¼ 1 if ð�Þ is true,
0 otherwise.

The 0–1 loss function is NP-hard to optimize, non-smooth and non-
convex.

Square
loss

P
i;l½Fθ li�Yli�2 ¼ ‖Fθ�Y‖22 The square loss function is a convex upper bound on the 0–1 loss. It is

smooth and convex, thus easy to optimize

Hinge
loss

P
i;l½1�Fθ liY li�þ ¼ 1>

N ½1N�L�Fθ○Y �þ 1L where ½x�þ ¼maxð0; xÞ, 1NARN is a
columnvector with all ones, and ○ denotes the elementwise product of two matrices

The hinge loss function is not smooth but subgradient descent can be
used to optimize it. It is the most common loss function in SVM

Logistic
loss

P
i;lln½1þe� Fθ liYli � ¼ 1>

N ln 1N�Lþe�Fθ○Y
� �

1L This loss function is also smooth and convex, and is usually used in
regression problem.
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