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a b s t r a c t

This paper presents a robust tracking algorithm by sparsely representing the object at both global and
local levels. Accordingly, the algorithm is constructed by two complementary parts: Global Coupled
Learning (GCL) part and Local Consistencies Ensuring (LCE) part. The global part is a discriminative
model which aims to utilize the holistic features of the object via an over-complete global dictionary and
classifier, and the dictionary and classifier are coupled learning to construct an adaptive GCL part. While
in LCE part, we explore the object's local features by sparsely coding the object patches via a local
dictionary, then both temporal and spatial consistencies of the local patches are ensured to refine the
tracking results. Moreover, the GCL and LCE parts are integrated into a Bayesian framework for
constructing the final tracker. Experiments on fifteen benchmark challenging sequences demonstrate
that the proposed algorithm has more effectiveness and robustness than the alternative ten state-of-the-
art trackers.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Visual tracking is an indispensable topic in computer vision,
due to its numerous applications in vehicle navigation, surveil-
lance, and human–computer interaction [1,2]. Although efforts
have been made by many researchers for constructing more
effective trackers in the past years [3–6,40,44], tracking is still a
challenging problem, since only few groundtruth in the first frame
can be used, and the targets may undergo pose variation, occlu-
sion, illumination changing, background cluttering, etc. All these
challenges may contribute to track error and turn to drift.

To design a robust tracker which can handle the aforemen-
tioned challenges, various representation schemes are introduced
into tracking task, such as pixel-based tracker [7], adopted features
based trackers (e.g., texture [8], color [9], sparse-based tracker
[9–23]), description models based trackers (e.g., histogram [15],
subspace representation [11,40]) and multilevel quantization tra-
cker [16]. Among the schemes listed above, sparse representation
is wildly considered to be an effective tool for dealing with the
aforementioned challenges.

As to sparse-based trackers, Mei and Ling [10] sparsely repre-
sent each object in a space spanned by trivial templates to tackle

occlusion, and corruption challenges. Jia et al. [17] propose a
tracking method based on a structural local sparse appearance
model which exploits both local and spatial information of the
target. Moreover, Bai et al. [13] model the object as a sparse linear
combination of structured union of subspaces in a basis library. In
addition, Hong et al. [18] integrate a multi-task and multi-view
sparse learning problem into particle filter framework, which aims
to explore underlying relationships between different particles
and various types of visual features for tracking. However, all these
works only address the foreground samples to construct genera-
tive models while ignoring the information from background.

To add the background information, Liu et al. [19] and Wang
et al. [20] construct discriminative models based on sparse
representation; however, they only encode the local patches of
both object and background, while lose the holistic information
provided by the object. Additionally, Xie et al. [14] utilize the
sparse representation of target and background by combining both
generative model and discriminative model, but they only
encode the object in a holistic level without taking the local
information into consideration. Meanwhile, some other algorithms
also try to integrate both generative and discriminative models for
tracking [24–27]; however, they are not sparse-based algorithms
and they do not exploit the combination of holistic and local
features.

To address the above problems, in this paper, we aim to integrate
the advantages of both discriminative model and generative model to
exploit the holistic and local information from the object. Thus, the
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proposed algorithm is constructed by both global and local parts. In
the global part, we encode holistic information of both object and
background via a global dictionary, then the sparse codes are used to
train a classifier to roughly distinguish the target from the back-
grounds. As to the update scheme, we coupled learning the global
dictionary and classifier instead of updating the dictionary and clas-
sifier as two separate parts as traditional algorithms in [20,21]. In
local part, we first partition the candidates into patches, then use a
local dictionary to encode the patches into sparse codes. Finally,
between two consecutive frames, both temporal and spatial consis-
tencies of the patches are ensured to refine the tracking results.
Moreover, the global part and local part are two complementary
parts which contain both holistic and local information of the object,
and we integrate them into a Bayesian inference framework to
construct the final tracker.

The contributions of this paper are as follows:

(1) We sparsely represent the object in both global and local levels
via two complementary parts, and these two parts give novel
aspects to utilize the object's holistic and local information for
tracking.

(2) To construct an adaptive GCL part, we employ an online
algorithm to coupled learning of the global dictionary and
classifier.

(3) In LCE part, we propose a new method to calculate the can-
didates' local confidences based on the temporal and spatial
consistencies among the object patches.

Similar with our work, Zhong et al. [31] propose a sparse-based
collaborative model which exploits both holistic and local infor-
mation of the object. But we are different from them in both the
way of sparse representation and the dictionary updating algo-
rithm. Moreover, we use two stage filtering to combine the global
and local parts instead of simply multiplying the confidence values
of the holistic template and local patches in [31], and more
detailed differences between the two trackers will be discussed
in Section 2.

The paper is organized as follows. Firstly, we briefly discuss
some related work in Section 2, and the details of our proposed
tracker will be presented in Section 3. Then Section 4 presents the
quantitative and qualitative comparisons between the proposed
algorithm and some state-of-the-art trackers. Finally, conclusions
and future work are followed in Section 5.

Over-complete
Global

Dictionary

 Classifier

Positive
samples 

Negative
samples

( , )gw D

Global Classification Score

( )g

Sampling Gaussian
pyramid

Calculating  candidates
 global scores

Coupled learning
dictionary and 

classifier

Coupled
learning

gD w Global
scorex

Test candidates

x*

Fig. 2. Workflow of discriminative GCL part, we put both positive and negative samples into Gaussian pyramid, then use the coarse samples to coupled learn Dg and w as
Algorithm 1, when global dictionary and the classifier are learnt, we can encode the test candidates, and obtain the global scores of the candidates by Eq. (5).
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Fig. 1. Illustration of holistic features extraction via Gaussian pyramid. Both
positive and negative samples are put into Gaussian pyramid, and the pyramid
filters and downsamples the original samples, then returns the coarse version of
the samples.
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Fig. 3. Illustration of image partitioning and labeling step. In this paper, we
partition the positive samples via 4�4 grid, and label the patches from 1 to l6
as illustrated above.
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