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a b s t r a c t

A Gene Regulatory Network (GRN) is the functional circuitry of a living organism that exhibits the
regulatory relationships among genes of a cellular system at the gene level. In real-life biological
networks, the number of genes present are very large exhibiting both, the instantaneous and time-
delayed regulations. While our recent technique [1] addresses the modeling of time-delays occurring in
genetic interactions, the issue of large-scale GRN modeling still remains. In this paper, we propose a
novel methodology for large-scale modeling of GRNs by decomposing the GRN into two independent
sub-networks utilizing its biological traits. Using the time-delayed S-system model [1], these two sub-
networks are learnt separately and then combined to get the entire GRN. To speed up the inference
mechanism, a cardinality-based fitness function, especially developed for inferring large-scale GRNs is
proposed to allow incorporation of knowledge of maximum in-degree. A novel local-search method is
also proposed to further facilitate the incorporation of biological knowledge by gene clustering and gene
ranking. Experimental studies demonstrate that the proposed approach is successful in learning large
genetic networks, currently not achievable with existing S-system based modeling approaches.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reverse engineering Gene Regulatory Network is the process of
representing the genetic interactions given by time-series data
with an appropriate mathematical model. It can reveal the under-
lying biological processes of living organisms, and provide new
insights into, e.g., the causes of complex diseases [2]. Accurate
prediction of the behaviour of regulatory networks can also speed
up biotechnological research since predictions are quicker, con-
sistent and cheaper than the wet lab experiments. With the advent
of cutting-edge microarray technologies, it has become possible to
generate time series data embedded with biological knowledge
which can help unravel the underlying genetic interactions using
any of the model-based system identification methods. Computa-
tional methods, both for supporting the development of network
models and for the analysis of their functionality, have already
proved to be a valuable research tool.

The models for reverse-engineering GRNs can be broadly categor-
ized into three major groups, namely co-expression network, Baye-
sian network and differential equation. Co-expression networks [3]

are coarse-scale, simplistic models that employ pairwise association
measures for inferring interaction between genes. Although these
models require low computational time and can be scaled up to very
large networks of thousands of genes, they lack the precision
necessary for accurate modeling of system dynamics. On the other
hand, Bayesian network (BN) models, based on the strong foundation
of probability and statistics, are sophisticated and accurate but unable
to implement feedbacks that are common in genetic network. The
Dynamic Bayesian Network (DBN), a temporal form of BN, overcomes
this limitation and allows feedback [4–6]. The third group, differ-
ential equation based models, belongs to a sophisticated and well
established class of methods for modeling GRNs [7,1]. A salient
feature of all differential equation based approaches is their ability to
accurately model system dynamics in continuous time. While most
approaches in this group apply Ordinary Differential Equation (ODE)
to model interactions, some Delay Differential Equations (DDE) based
approaches have also been reported [8,9].

The S-system, with a set of tightly coupled differential equations, is
amongst the best non-linear differential models for modeling bio-
chemical interactions. It is a rich model for capturing system dynamics
and has been considered to provide an excellent balance between
model complexity and mathematical tractability. These advantages of
S-system model have led to large number of recent applications and
improvements [10,11]. To reduce the computational burden, Maki
et al. [12] proposed decoupled S-system model that divides the
problem into N sub-problems, which improves the time required for
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reverse engineering. Despite application of decoupled system, the
ability to infer GRN on large-scale, with thousands of genes, remains a
major challenge. The S-System approach is known to be intrinsically
compute-intensive [11,10,13] mainly because of the large number of
parameters to be estimated and also due to the associated numerical
integration to be carried out for each gene at every time step. The
number of parameters (including time delays) to be learnt for a N-
gene network is quadratic in the number of genes,
i.e., 2NðNþ1Þþ2� N � N¼ 2Nð2Nþ1Þ. Hence, even for a network
with, say 100 genes, the number of parameters would be 402 for a
decoupled system (40200 if decoupling was not applied), which is a
significantly large number of parameters to be learnt. To empirically
provide an understanding of the time complexity, we executed our
time-delayed S-system (TDSS) model [1] to infer a 100-gene synthetic
network from a time-series having 10 datasets, each with 11 samples.
On average, it took �1min to complete a single iteration, requiring
�25 h to infer the regulations for single gene (implemented in Cþþ
using a 2.16 GHz Dual CPU with 3 GB of RAM with the same set of
parameters mentioned in [1]). Thus, to reverse engineer the entire
GRN of 100 genes, it would require 3.5 months for TDSS
on a single PC. Using clusters of computers could ameliorate the
situation, albeit the problem would still remain. For example, in 2003
Kikuchi et al. [11] used 1024 CPUs to solve the 5-gene network, which
still took over 10 h to learn the parameters.

Due to computational complexity, the current application of
S-system model for reverse engineering GRN is restricted to inferring
either small-scale GRNs (i.e., 5–10 genes) or medium-scale GRNs (i.e.,
upto 50 genes) [14,15,1]. However, in reality, the genetic networks are
large-scale networks consisting of thousands of genes and its recon-
struction is referred to interchangeably as either “large-scale reverse
engineering” or “reverse engineering large-scale GRNs”. In this paper,
we propose a modeling approach which enables the inference of such
large-scale GRNs using S-system.

In this paper, to perform S-system based large-scale GRN model-
ing, we propose improvements in both, the modeling paradigm and
the model parameter learning. To develop a new S-systemmodel, we
bifurcate the entire set of genes into two groups. The first group
comprise of all genes which are responsible for controller action, i.e.,
Transcription Factor (TF), Enzyme catalyst, antibody, etc. We will call
all these genes collectively as Regulatory Genes (RGs). The second
group will have genes, other than RGs, called Target Genes (TGs),
which can be controlled by RG but do not have any controlling action
of their own. Separating genes into two categories of RG and TG and
incorporating this knowledge into the modeling process allows us to

decompose the overall GRN into two sub-networks, which can be
reconstructed independently thereby significantly reducing the
enormous computational complexity if a complete GRN network
reconstructionwere to be undertaken in traditional manner. The RGs,
TGs and their interactions are illustrated by a synthetic GRN of 20
genes [7] shown in Fig. 1(a). Of these 20 genes, 4 genes
(G9;G16;G19;G20) do not regulate any other genes but merely per-
form self-degradation. On the other hand, the remaining genes
regulate each other and also these 4 genes (i.e., TGs). Fig. 1(b),
redrawn from Fig. 1(a), clearly illustrates the difference between the
roles of RGs (G1�G8;G10� G15;G17�G18) and TGs (G9;G16;G19;G20).
For improving evolutionary optimization technique, suitable for
large-scale modeling of GRN, we propose to learn the model
parameters using a novel cardinality based fitness function inspired
by power law distribution of genes' in-degree along with a novel
local search method based on knowledge-based gene clustering and
gene ranking.

Themodeling approach, briefly highlighted above, allowsmodeling
large-scale GRNs (typically thousands of genes) with S-system model.
This is made possible due to the bifurcation of the entire GRNs into
two sub-networks and adapting the existing S-system modeling
approach to these two sub-networks. Without decomposition, opti-
mization of model parameters would not have been possible due to
very high computational complexity due to large number of genes
involved. Since the real-life GRNs consist of thousands of genes, the
proposed method could thus find application in any large-scale GRN
modeling, e.g., understanding the p53-MDM2 genes feedback cycle in
cancerous cells. Further, the approach can be applied for drug design
after accurate inference of the interactions amongst disease genes.

The rest of the paper is organized as follows. Section 2 presents the
preliminaries relevant to the proposed method. The details of the
proposed model called TDSSþ are elaborated in Section 3. Section 4 is
devoted to the evaluation of TDSSþ for various networks, while the
discussion of the results are presented in Section 5. Finally, Section 6
concludes the paper.

2. Preliminaries

2.1. The S-system model

The S-system model, proposed by Savageau [16], is a well-known
system for biochemical networks and is found to be both promising
and challenging for GRN modeling. For an N gene network, the

Fig. 1. (a) 20-gene network of [7], (b) 20-gene network after re-arrangement where 4 TGs (G9;G16 ;G19 ;G20) and 16 RGs (G1�G8;G10�G15;G17�G18) are shown separately.
Arrow and block ended edges represent activations and suppressions, respectively.

A. Raja Chowdhury, M. Chetty / Neurocomputing 160 (2015) 213–227214



Download English Version:

https://daneshyari.com/en/article/406211

Download Persian Version:

https://daneshyari.com/article/406211

Daneshyari.com

https://daneshyari.com/en/article/406211
https://daneshyari.com/article/406211
https://daneshyari.com

