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In this paper, the problem of robust finite-time stabilization with guaranteed cost control for a class of
delayed neural networks is considered. The time delay is a continuous function belonging to a given
interval, but not necessary to be differentiable. We develop a general framework for finite-time
stabilization with guaranteed cost control based on the Lyapunov functional method and new general-
ized Jensen integral inequality. Novel criteria for the existence of guaranteed cost controllers are
established in terms of linear matrix inequalities (LMIs). The proposed conditions allow us to design the
state feedback controllers which robustly stabilize the closed-loop system in the finite time. A numerical
example is given to illustrate the efficiency of the proposed method.
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1. Introduction

The concept of finite-time stability (FTS), introduced by Dorato
[1], plays an important role in stability theory of dynamical
systems. A system is said to be finite-time stable if its state does
not exceed a certain threshold during a specified time interval.
Compared with the Lyapunov stability, finite-time stability con-
cerns the boundedness of system during a fixed finite-time
interval. The problem of FTS has been revisited using linear matrix
inequality technique, which allows us to find feasible conditions
guaranteeing FTS. A lot of interesting results on finite-time
stability and stabilization in the context of linear time-delay
systems have been obtained (see, e.g., [2-4] and the references
therein). In many practical systems, it is desirable to design the
system which is not only finite-time stable but can also guarantee
an adequate level of system performance. One approach to this
problem is the guaranteed cost control [5-8] in which a fixed
quadratic Lyapunov function is used to derive an upper bound on
the closed-loop value of an integral quadratic cost function.

Guaranteed cost control problem has the advantage of provid-
ing an upper bound on a given system performance index and thus

* Corresponding author. Tel.: +84 437563474; fax: +84 437564303.
E-mail addresses: piyapong.n@cmu.ac.th (P. Niamsup),
kreangkri@mju.ac.th (K. Ratchagit), vnphat@math.ac.vn (V.N. Phat).

http://dx.doi.org/10.1016/j.neucom.2015.02.030
0925-2312/© 2015 Elsevier B.V. All rights reserved.

the system performance degradation incurred by the uncertainties
or time delays is guaranteed to be less than this bound. The
Lyapunov-Krasovskii functional technique has been among the
popular and effective tool in the design of guaranteed cost controls
for neural networks with time delay. Nevertheless, despite such
diversity of results available, most existing work either assumed
that the time delays are constant or differentiable. Although, in
some cases, delay-dependent sufficient conditions for stability of
neural networks with time-varying delays were considered in [9-
14], the approach used there cannot be applied to systems with
interval, non-differentiable time-varying delays. On the other
hand, due to the widespread use in control systems of digital
computers that employ finite-precision arithmetic, the signals
often need to be quantized before the manipulation of feedback.
However, as far as we know, few results are reported on the finite-
time stabilization of neural networks with guaranteed cost control
feedback, especially of neural networks with interval, non-
differentiable time-varying delays.

In this paper, we consider problem of the finite-time stabiliza-
tion with guaranteed cost control for delayed neural networks.
Such systems can be regarded as a special class of functional
differential equations, namely dynamical nonlinear time-delay
systems [15]. We show how to design guaranteed cost feedback
controllers to robustly finite-time stabilizes the closed-loop delay
neural networks by using the method of Lyapunov-Krasovskii
functionals. The novel features of this research are (i) the neural
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network under consideration subjected to interval time-varying
delays; (ii) nonlinear cost function is considered as a delay
performance measure for the closed-loop system; (iii) using new
bounding estimation technique by generalized Jenzen integral
inequality, a set of simple Lyapunov-Krasovskii functionals is
constructed to solve LMI conditions. The LMI stabilizing conditions
are easily determined by utilizing MATLABs LMI Control Toolbox
[16].

2. Preliminaries

The following notation will be used in this paper. R™ denotes the
set of all non-negative real numbers; R" denotes the n-dimensional
space with the scalar product (x,y) or x"y of two vectors x,y; M™"
denotes the space of all matrices of (n x r)-dimensions. AT denotes the
transpose of matrix A; A is symmetric if A=AT; I denotes the iden-
tity matrix; A(A) denotes the set of all eigenvalues of A;
Amax(A) = max{Re 1; 1 € A(A)}. Xx;: = {x(t+5):se[—h,0]}, lIx; Il =sup
se[—hoy 1 X(t+5s)II; C(0,T],R") denotes the set of all R"-valued con-
tinuous functions on [0, T]; Ly([0,T],R™) denotes the set of all the
R™-valued square integrable functions on [0, T]; matrix A is called
semi-positive definite (A > 0) if (Ax,x) > 0, for all x e R";A is positive
definite (A > 0) if (Ax,x) > O for all x = 0; A > B means A—B > 0. The
notation diag {...} stands for a block-diagonal matrix. The symmetric
term in a matrix is denoted by s

Consider the following neural networks with interval time-
varying delay:

X(t) = —Ax(t)+ Wof (x(1) + W1 g(x(t — h(t))) + Bu(t) + Wow(t), te[0,T],
XO=¢O), te[—hy,0] 2.1

where x(t) = [X1(t), X2(b), ..., xn(t)]T € R" is the state of the neural,
u(-) € L,([0, T],R™) is the control; w(-) € Ly([0, T], R"), n is the number
of neurals, and f(x(t)) = [f1(X1().fo(X2(D)). ... f(xn(®)) 1" and g
(*(1) = [81(X1(1)), & (X2(1)), ..., gn(xn(t))]T are the activation func-
tions; A=diag (ay,ay,...,an),a; >0 represents the self-feedback
term; Be R™™ is the control input matrix; Wy and W, denote the
connection weights and the discretely delayed connection
weights, respectively; W> denotes the connection disturbance.
The delay function h(t) is continuous and satisfies the condition

0<h;<h(t)y<hy, te[0,T].

The initial functions ¢(t) e C([—hy,0],R") and the disturbance is
continuous function satisfying
T
3d>0: / W (Ew(o) dt < d. 2.2)
Jo
In this paper, we consider various activation functions and assume

that the activation functions are Lipschitzian with the Lipschitz
constants k;, I; > 0,f;(0) = g;(0) = O:

Ifi€)—fiED)] <ki|& =&, i=1,2,...n, V&EeR,
18i(E)—8gi(&)| <lilé1 =&, i=1,2,..,n, V&eR,

Under the above assumptions on h(-),f(-),g(-) and the initial
function ¢(t), the system (2.1) has a unique solution x(t,¢) on
[0,T] (see, e.g., [15]). The performance index associated with the
system (2.1) is the following function:

2.3)

T
= /0 FO(EX(0). x(E— h(o)), u(t) d, 2.4)

where fO(t, x(t), x(t — h(t)), u(t)) : [0,T] x R" x R" x R" >R™ is a non-
linear continuous function that satisfies
3Q1. Q2. H: fO(t.x.y. u) < (Q1X. %) +(Qay. y) +(Hu, u), (2.5)

for all (t,x,y,u)eR™ x R" xR" x R™ and Qy,Q; e R™" HeR™™
are given symmetric positive definite matrices. The objective of
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this paper is to design a memoryless state feedback controller
u(t) = Kx(t) and a positive number J* such that the resulting closed-
loop system

X(t) = — (A—BK)X(t) + Wof (x(t)) + W1 g(x(t — h(t))) + Wow(0),

is finite-time stable for all disturbances w(t) satisfying (2.2) and
the value of the cost function (2.4) is bounded by J*.

(2.6)

Definition 2.1 (Dorato [1]). For a given time T >0, numbers
c;>c; >0, and R is a symmetric positive definite matrix, the
unforced control system (2.1) (u(t)=0) is robustly finite-time
stable w.r.t (c1,c3, T,R) if the following relation holds for all
disturbances w(t) satisfying (2.2):

sup < (S)RH(S), [pT(s)R(])(s)} <c;=x"()Rx(t) <3, Vte[0,T].

—h; <s<0

Definition 2.2 (Chang and Peng [5]). For a given time T >0,
numbers ¢, > ¢; > 0, and R is a symmetric positive definite matrix,
if there exist a memoryless state feedback control law u*(t) = Kx(t)
and a positive number J* such that the closed-loop system (2.6) is
robustly finite-time stable w.r.t (c1,c3,T,R) and the cost function
(2.4) satisfies J(u*) < J*, then the value J* is a guaranteed cost value
and the control u*(t) is a guaranteed cost controller.

We introduce the following technical well-known propositions,
which will be used in the proof of our results.

Proposition 2.1 (Schur complement lemma, Boyd [17]). Given con-
stant matrices X, Y, Z with appropriate dimensions satisfying
Y=Y">0,X=XT, then X+2'Y~'Z <0 if and only if

T
Xz <0.
zZ -Y

Proposition 2.2 (Generalized Jensen inequality, Seuret and Gouais-
baut [18]). For a given symmetric matrix R > 0 and any differentiable
function ¢ : [a, b]—R", the following inequality holds

b 1 12
[ 0" @Rp@) du> (b~ (@) Rpb)— (@) +5 "R,
a
where Q2 = (p(b)+¢(a))/2—(1/(b—a)) ff o(u) du.
3. Main result
In this section, we give a design of memoryless guaranteed

feedback cost control for neural networks (2.1) with interval
time-varying delays such that the closed-loop system is robustly
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Fig. 1. The trajectories x;(t), and x,(t) of closed-loop system.
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