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a b s t r a c t

Fundamental matrix estimation has been studied extensively in the area of computer vision and
previously proposed techniques include those that only use feature points. In this study, we propose a
new technique for calculating the fundamental matrix combined with feature lines, which is based on
the epipolar geometry of horizontal and vertical feature lines. First, a method for parameterizing the
fundamental matrix is introduced, where the camera orientation elements and relative orientation
elements are used as the parameters of the fundamental matrix, and the equivalent relationships are
deduced based on the horizontal and vertical feature lines. Next, the feature lines are used as the interior
points by the RANSAC algorithm to search for the optimal feature point subset, before determining the
weight of each factor using the M-estimators algorithm and building a unified adjustment model to
estimate the fundamental matrix. The experimental results obtained using simulated images and real
images demonstrate that the proposed approach is feasible in practice and it can greatly reduce the
dependency on feature points in the traditional method, while the introduction of feature lines can
improve the accuracy and stability of the results to some extent.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The estimation of three-dimensional (3D) information from
images is an important problem in computer vision. At present,
many approaches are available to accomplish this task, which can
be classified into stratified reconstruction and direct reconstruc-
tion [1]. The first approach is based on a previous camera
calibration but it cannot be used in active systems because of its
lack of flexibility, where the intrinsic and extrinsic parameters of
the camera need to be fixed [2]. The second approach is based on
either the Euclidean reconstruction [3] or the epipolar geometry
[4]. However, the approaches based on Euclidean reconstruction
require a priori knowledge of the scene [5], such as the projective
basis and invariants, whereas the epipolar geometry is based only
on point correspondences. Thus, the latter method has been
studied widely during the last decades [6–8].

The epipolar geometry is the intrinsic projective geometry
between two views [1], which is independent of the scene
structure, and it depends only on the cameras’ internal parameters
and relative pose [4]. The fundamental matrix is an algebraic

representation of the epipolar geometry, thus, the projective
reconstruction of the scene or object can be inferred from it. In
other words, the epipolar geometry can be expressed fully in
terms of the fundamental matrix. Therefore, it is a required step
for applications such as camera calibration [9], self-calibration
[10,11], projective reconstruction [12], 3D reconstruction [12,13],
object matching and tracking [11,14,15], attitude estimation [16],
and 3D measurements [17].

An application of scene reconstruction using epipolar geometry
was first published by Longuet-Higgins [12]. Subsequently, great
efforts have been made to improve this method. At present, the
commonly used methods can be divided into linear methods
[4,12], iterative methods [18], and robust methods [19–21]. Linear
methods perform well if the points are well located in the image
and the corresponding problem has been solved previously;
Iterative methods can cope with some Gaussian noise in the
localization of points, but they are inefficient in the presence of
outliers; Robust methods can cope with discrepancies in the
localization of points and false matching [2]. Therefore, robust
methods have more widespread practical applications.

Armangué and Salvi surveyed 19 of the most widely used
techniques for computing the fundamental matrix [2]. Fathy et al.
also summarized and compared the accuracy and efficiency of the
different error criteria, which are used to compute the fundamental
matrix [22]. The methods used to calculate the fundamental matrix
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appear to have been adequate. In recent years, however, researchers
have begun to study the application of fundamental matrix estima-
tion in some special cases. For example, Yang et al. proposed a novel
technique for estimating the fundamental matrix based on least
absolute deviation [23]. Zhang computed the fundamental matrix in
the presence of radial lens distortion [24]. Steger proposed a
method for estimating the fundamental matrix in conditions of
pure translation and radial distortion [25]. Additional computa-
tional time is required by real-time applications, especially video
data analysis with numerous frames per second. Thus, efforts have
been made recently to facilitate the automated computation of the
fundamental matrix for vision-based construction site applications
[26]. Overall, these methods can be summarized as special cases of
calculating the fundamental matrix.

The methods mentioned above all use models based on feature
points, but there may be few feature points or the distribution of
feature points may not be appropriate in some cases, which means
that ideal results may not be obtained in these situations. The
processing of stereo pairs during imaging includes straight lines,
curves, vanishing points, and absolute conics, in addition to
feature points. These feature objects also contain the epipolar
geometry relationship during imaging. However, the fundamental
matrix is derived from the feature points and other feature objects
cannot be included in the calculation process. Therefore, if the
utilization of these feature objects could be increased, it may be
possible to reduce the dependency of the fundamental matrix
estimation on the feature points, which could also expand the
application scope of the fundamental matrix.

A new method for fundamental matrix estimation is proposed
in this study, which is based on the epipolar geometry of the
horizontal and vertical lines. First, a method for parameterizing
the fundamental matrix is introduced and the equivalent relation-
ships are deduced based on the horizontal and vertical line. The
feature lines are then used as the interior points by the RANSAC
algorithm [27], before determining the weight of each factor with
M-estimators algorithm [21] and building the final unified adjust-
ment model. This method reduces the dependency of the tradi-
tional calculation method on the feature points, so it is suitable for
cases where there are few feature points but the feature lines are
present. In addition, the geometrical characteristics of feature lines
are more obvious than those of feature points, so the proposed
method has high positioning accuracy and a lower possibility of
false matching. Therefore, the introduction of feature lines can also
improve the accuracy and stability of the final result.

The rest of the paper is organized as follows. After briefly
introducing the parameterization of the fundamental matrix in
Section 2, we describe the new approach of estimating the
fundamental matrix in Section 3, and the experimental results
are presented in Section 4. Finally, some conclusions are provided
in Section 5.

2. Parameterization of the fundamental matrix

Epipolar geometry exists between any stereo-camera systems.
Algebraically, the epipolar constraint can be expressed using the
fundamental matrix as follows:

mTFm0 ¼ 0 ð1Þ

where F is the fundamental matrix, which is a 3�3 singular
matrix of rank 2 that is defined by a scale factor, and m and m0 are
the homogeneous coordinates of the point correspondences. To
ensure its singularity, there are several possible parameterizations
for F [1]. To calculate F using feature lines, a method of para-
meterization based on the relationship between the camera

orientation elements, the relative orientation elements, and the
elements of F is proposed.

As shown in Fig. 1, two stereo images are situated within the
3D global coordinate system O-XYZ. The 2D image coordinates
system c-xy and the 3D image space coordinates system o� ~x ~y ~z
are local to the image on the left. The orientation of o� ~x ~y ~z in the
3D global coordinates system O-XYZ is captured by an orthonormal
rotation matrix R, which is defined by three successive rotation
angles α, β, γ around O-X, O-Y, O-Z:

R¼ RαRβRγ ¼
1 0 0
0 cos α sin α
0 � sin α cos α

264
375 cos β 0 � sin β

0 1 0
sin β 0 cos β

264
375 cos γ sin γ 0

� sin γ cos γ 0
0 0 1

264
375

ð2Þ
Suppose that an object point M¼(X,Y,Z) in O-XYZ is projected

onto an image point m(x,y) in the 2D image coordinates system, ~m
is the 3D image space coordinate and m is the auxiliary image
space coordinate (the auxiliary image space coordinate system
o� xyz is definite, with origin o, and the orthogonal axes are
labelled xyz , where the orientation of its axes are the same as
O-XYZ). Then, we have:

m¼ R ~m ¼ RΩm ð3Þ

m¼
x

y

1

264
375; Ω¼

1 0 �x0
0 1 �y0
0 0 � f

264
375; R¼

r11 r12 r13
r21 r22 r23
r31 r32 r33

264
375 ð4Þ

where x0; y0; f
� �

are the elements of the interior orientation.
Similarly, the symbols related to the image on the right are marked
with a prime symbol (0). In the same manner, the image coordinate
of M in the right image is m0, the 3D image space coordinate is ~m 0,
and the auxiliary image space coordinate is m0. Then, we have:

m0 ¼ R0 ~m 0 ¼ R0Ω0m0 ð5Þ

m0 ¼
x0

y0

1

264
375; Ω0 ¼

1 0 �x00
0 1 �y00
0 0 � f 0

264
375; R0 ¼

r011 r012 r013
r021 r022 r023
r031 r032 r033

264
375 ð6Þ

Let B denote the baseline vector of oo0. Clearly, the five points o,
m, o0, m0, M are coplanar, which can be captured by using a cross-
product of the three vectors that is equal to zero:

mT B�m0� �¼mT B½ ��m0 ¼ 0 ð7Þ
Using the notations and relations defined by Eqs. (3) and (5),

we obtain:

mTΩTRT B½ ��R0Ω0m0 ¼ 0 ð8Þ

Fig. 1. Analytical geometry of two stereo images.
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