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h i g h l i g h t s

• The GCI method proposed in this paper could be applied to indicate genuine and stochastic synchronization in multivariate EEG series at different
frequency bands.
• The GCI method proposed in this paper was less influenced by the frequency bands than the GSI and S-estimator methods, indicating that the GCI

method was more robust. And the GCI method had a better performance on the coupling coefficient relative to GSI and S-estimator.
• The GCI method proposed in this paper was more sensitive than GSI and S-estimator methods in differing synchronization strength of EEG between

MCI and NC, and could be considered as a potential indicator diagnosing MCI.
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a b s t r a c t

Recently, the synchronization between neural signals has been widely used as a key indicator of brain
function. To understand comprehensively the effect of synchronization on the brain function, accurate
computation of the synchronization strength among multivariate neural series from the whole brain is
necessary. In this study, we proposed a method named global coupling index (GCI) to estimate the syn-
chronization strength ofmultiple neural signals. First of all, performance of the GCImethodwas evaluated
by analyzing simulated EEG signals from a multi-channel neural mass model, including the effects of the
frequency band, the coupling coefficient, and the signal noise ratio. Then, the GCI method was applied to
analyze the EEG signals from 12 mild cognitive impairment (MCI) subjects and 12 normal controls (NC).
The results showed that GCI method had two major advantages over the global synchronization index
(GSI) or S-estimator. Firstly, simulation data showed that the GCImethod provided both amore robust re-
sult on the frequency band and a better performance on the coupling coefficients. Secondly, the actual EEG
data demonstrated that GCImethodwasmore sensitive in differentiating theMCI from control subjects, in
terms of the global synchronization strength of neural series of specific alpha, beta1 and beta2 frequency
bands. Hence, it is suggested that GCI is a bettermethod over GSI and S-estimator to estimate the synchro-
nization strength ofmultivariate neural series for predicting theMCI from thewhole brain EEG recordings.

© 2014 Published by Elsevier Ltd.

∗ Corresponding author.
∗∗ Correspondence to: State Key Laboratory of Cognitive Neuroscience and
Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University,
No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, China.

E-mail addresses:mdwangyp@yahoo.com.cn (Y. Wang), xiaoli@bnu.edu.cn
(X. Li).
1 Corresponding address: Xuanwu Hospital, Capital Medical University, No. 45

Changchun Street, Xuanwu District, Beijing 100053, China.

1. Introduction

The synchronization occurs between the neurons, and between
different regions of brain (Pikovsky, Rosenblum, & Kurths, 2001).
Generally, the synchronization may be realized by integrating the
function of various regions of brain and interacting continuously
between various regions (Fell et al., 2001; Varela, Lachaux, Ro-
driguez, & Martinerie, 2001; Womelsdorf et al., 2007). To be
specific, the neuronal groups from various regions regulate their
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own dynamical features, and lock the activity of brain within
the scope of a certain time and frequency band (Pikovsky, 1984;
Pikovsky et al., 2001; Rosenblum, Pikovsky, &Kurths, 1996; Rulkov,
Sushchik, Tsimring, & Abarbanel, 1995). Therefore, the analysis of
synchronization has been a focus in understanding the mecha-
nisms on brain signals (Courtemanche, Robinson, & Aponte, 2013;
Ivancevic, Jain, Pattison, & Hariz, 2009; Knyazeva et al., 2012; Park
et al., 2008; Pikovsky et al., 2001; Rosenblum, Cimponeriu, Beze-
rianos, Patzak, & Mrowka, 2002). The synchronization strength of
neural signals, which describe the synchronization activity, may
reveal the information processing in a normal or abnormal brain
(Buzsáki & Draguhn, 2004; Fell et al., 2001; Varela et al., 2001).
Multi-channel EEG is often used in the estimation of the syn-
chronization strength of neural signals. The global synchronization
strength of multi-channel EEG signals is a signature of brain func-
tion and a bio-marker for the early diagnosis of brain diseases such
as mild cognitive impairment and Alzheimer’s diseases (Aarabi,
Wallois, & Grebe, 2008; Carmeli, Knyazeva, Innocenti, & De Feo,
2005; Darvas, Ojemann, & Sorensen, 2009; Knyazeva et al., 2012,
2010; Rudrauf et al., 2006; Stam, Jones, Nolte, Breakspear, & Schel-
tens, 2007). However an effective estimationmethod for the global
synchronization strength of multi-channel EEG signals is critical.

Many methods have been applied to estimate the synchro-
nization strength between two neural signals, including phase
synchronization analysis (Allefeld & Kurths, 2004), cluster anal-
ysis (Stuart, Walter, & Borisyuk, 2005), frequency flows and
time–frequency dynamics analysis (Rudrauf et al., 2006), mixture-
of-Gaussians analysis (Matsumoto, Okada, Sugase-Miyamoto, Ya-
mane, & Kawano, 2005), and graph theoretic analysis (Stam et al.,
2007). However, none of the above methods can be used to calcu-
late the global synchronization strength among multivariate neu-
ral series. Lately, the S-estimator method had been proposed to
estimate the global synchronization strength ofmulti-channel EEG
signals (Carmeli et al., 2005). Nevertheless, the S-estimator did not
consider the effect of the random and/or artifact components, and
the bias was due to the finite length of the signal. Global field syn-
chronization (GFS)was anothermethod tomeasure functional syn-
chronization in frequency-domain EEG data, which could estimate
the functional connectivity between brain areas in different EEG
frequency bands (Koenig et al., 2005). However, the GFS method
did not give the strength of the synchronized cluster and a thresh-
old was needed to be set in advance. Recently, an improved S-
estimatorwas proposed to obtain a global synchronous index (GSI)
of multiple neural series (Cui, Liu, Wan, & Li, 2010). The correla-
tion coefficient between neural series was calculated by an equal-
time correlation method, which was a simple way to measure a
linear correlation between two series. However, this method can-
not reveal the nonlinear interaction between two series, nor de-
pressed the effect of the noise. Therefore, it is necessary to explore
a new method for obtaining an accurate synchronization in-
dex among neural series and the reliable global synchronization
strength among multivariate neural series.

Permutation mutual information (PMI) (Ouyang, 2009) was a
new method to estimate the interdependency of two time series,
which had the advantages of themutual information (Baruchi, Vol-
man, Raichman, Shein, & Ben-Jacob, 2008; Chen et al., 2008) and
the permutation analysis (Bandt & Pompe, 2002). Namely, mutual
information considered the nonlinear and linear relationship be-
tween two EEG series, and permutation analysis could detect the
hiddenpatterns of time series accurately andwas excellent in over-
coming the effect of noise (Ouyang, 2009). PMImethodwas prefer-
able to calculate the synchronization strength between neural
series than other methods, such as equal-time correlation andmu-
tual information (Ouyang, 2009). Therefore, in this study, we inte-
grated the PMI into the GSI method, and proposed a new method
called global coupling index (GCI) for estimating the global syn-
chronization strength in multivariate neural signals. To test the

performance of the method, the simulated EEG time series from
multi-channel neural mass model was analyzed. The effects of dif-
ferent frequency bands, coupling coefficient, and signal noise ratio
(SNR) on the GCI, GSI, and S-estimator methods were investigated
for comparisons. The proposed GCI was then applied for the anal-
ysis of the multivariate EEG recordings from subjects with mild
cognitive impairment (MCI) and normal controls (NC), and the
correlation between theGCI values and scores ofMini-mental State
Examination (MMSE) and Montreal Cognitive Assessment (MoCA)
in all subjects were also analyzed.

2. Methods

2.1. Multi-channel neural mass model for simulation analysis

Aneuralmassmodel (NMM) is often used to generate simulated
EEG data that are very similar to real EEG signals (David, Cosmelli,
& Friston, 2004;Ursino, Zavaglia, Astolfi, & Babiloni, 2007; Zavaglia,
Astolfi, Babiloni,& Ursino, 2008). And a modified multi-channel
neural mass model (MMNMM) simulated successfully multi-
channel EEG signals (Cui, Li, Ji, & Liu, 2011; Cui et al., 2010). By using
the neural series from the MMNMM, the global synchronization
index and random synchronization index have been demonstrated
to track the amount of genuine synchronization and stochastic
synchronization in multivariate neural series (Cui et al., 2011).
Therefore, in this studyMMNMMwas used to test whether the GCI
was able to track the synchronization aswell. This study usedmany
parameters, which are the same as those used in the references
(Cui et al., 2011, 2010), including the channel number (M = 10),
parallel subpopulations number (N = 3),weight parameters (W =
[w1

j , w
2
j , w

3
j ], j = 1, . . . ,M), coupling coefficients (qjk = q(j, k =

1, . . . ,M, j ≠ k)), extrinsic inputs (pj(t)) and their mean value
(⟨pj⟩ = 220) and standard deviation (σpj = 22), propagation
time delay (τ0 = 10 ms), the sampling frequency (500 Hz), and
other specified parameters in the model. In Sections 3.1.2 and
3.1.3, 10-channel neural series was generated by the MMNMM
with the weight coefficients (W = [0.5, 0.3, 0.2]) to demonstrate
the performance of proposed method.

2.2. S-estimator and global synchronization index

The S-estimator (Carmeli et al., 2005) quantized the global syn-
chronization of multivariate time series recorded synchronously
from multiple sites. The global synchronization index (GSI) (Cui
et al., 2010) improved the S-estimator method. To calculate the S-
estimator and GSI value, a matrix with synchronizing information
between all possible pairs of time series needed to be evaluated.
Firstly, an equal-time correlation method was used to calculate a
correlation matrix C , and λ1 ≤ λ2 ≤ · · · ≤ λM were the eigen-
values of C , where M was the row and column number of C . And
then amplitude-adjusted Fourier transform (Schreiber & Schmitz,
1996) was applied to generate surrogate data. Based on the surro-
gate data, the equal-time surrogate correlation matrix R was cal-
culated, and the eigenvalues of R denoted λs

1 ≤ λs
2 ≤ · · · ≤ λs

M .
Then, the eigenvalues of matrix C were normalized:

λ
(1)
i =

λi
M
i=1

λi

, i = 1, . . . ,M. (1)

To reduce the effects of the random components in the total
synchronization, the eigenvalues were divided by the averaged
surrogate eigenvalues:

λ
(2)
i =

λi/λ̄
s
i

M
i=1

λi/λ̄
s
i

, i = 1, . . . ,M, (2)
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