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a b s t r a c t

A method is provided for designing and training noise-driven recurrent neural networks as models of
stochastic processes. Themethod unifies and generalizes two known separatemodeling approaches, Echo
State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy
minimization. The power of the new method is demonstrated on a stochastic approximation of the El
Niño phenomenon studied in climate research.
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1. Introduction

Black-box modeling methods for stochastic systems have a
broad range of applications in physics, biology, economy or the
social sciences. Generally speaking, a model of a stochastic sys-
tem is a representation of the conditional distribution of the sys-
tem’s future given the present state (Markov models) or some
part or the entire system past. There is a large variety of such
stochastic predictors among which we focus on generic methods
which do not depend on the type of data considered. The Auto-
Regressive–Moving-Average (ARMA)models (Box, Jenkins, & Rein-
sel, 2013) form a class of linear stochastic approximators which
has led to many derivative works and is widely used in engineer-
ing applications. In particular, it covers the case ofmultivariate lin-
ear stochastic differential equations (SDE), or Ornstein–Uhlenbeck
processes, which is the basic structure used in the Linear Inverse
Modeling (LIM) theory (Penland & Magorian, 1993). ARMA mod-
els are generally learnt by optimizing a least squares measure
of the prediction error. A notable characteristic of ARMA models
is that the dimension of the underlying SDE is identical to the
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observable dimension of the target time series. By contrast, dy-
namic Bayesian networks (Murphy, 2002), with Hidden Markov
Models (HMM) (Baum & Petrie, 1966; Rabiner, 1989) as the most
widely employed special case, rely on hidden variables. HMM are
trained by maximum likelihood schemes, typically with some ver-
sion of the expectation maximization algorithm (Dempster, Laird,
& Rubin, 1977; Moon, 1996). A problem with dynamic Bayesian
networks, inherited from their simpler static counterparts, is that
inference (e.g. prediction) quickly becomes computationally ex-
pensive when the dependency structure of hidden variables is not
particularly simple (as it is in HMMs). The Temporal Restricted
Boltzmann Machine (Sutskever & Hinton, 2006), a recent addition
to the spectrum of such models, is a point in case. With the ad-
vent of kernel machines in machine learning community, models
based on Gaussian Processes have been designed to approximate
stochastic processes (Rasmussen, 2006). A critical point regarding
thesemodels lies in their computational complexitywhenworking
with long time series. There is also a large body of literature about
online adaptive predictors, e.g. Kalman filters (Haykin, 2005). In
this paper however we focus on non-adaptive models trained on
all available training data using a batch algorithm.

Recurrent neural networks (RNNs) have also been used in
various ways for approximating stochastic dynamical systems. In
their basic forms (Pearlmutter, 1995; Williams & Zipser, 1995),
RNNs are models of deterministic dynamical systems; if trained
on data sampled from stochastic sources, at exploitation time
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such RNNs will not propose future distributions but only a single
expected mean future trajectory. RNNs represent, in principle, a
promisingmodel class because they are dense in interesting classes
of target systems, implying that arbitrarily accurate models can in
principle be found (Funahashi & Nakamura, 1993; Sontag, 1997).
Gradient-descent based learning algorithms for RNNs are typically
computationally expensive and cannot be guaranteed to converge.
Since about a decade, an alternative approach to RNN design
and training, now generally called reservoir computing (Jaeger &
Haas, 2004; Maass, Natschläger, & Markram, 2002), has overcome
the problem of learning complexity. The key idea in this field is
not to train all parameters of an RNN but only the weights of
connections leading from the RNN ‘‘body’’ (called reservoir) to the
output neurons. Here we will build on a particular instantiation of
reservoir computing called Echo State Networks (ESNs).

Although deterministic models at the outset, neural network
architectures for predicting future distributions have been vari-
ously proposed (Buesing, Bill, Nessler, & Maass, 2011; Husmaier &
Taylor, 1997), or neural networks were embedded as components
in hybrid models of stochastic systems (Chatzis & Demiris, 2011;
Krogh & Riis, 1999). Here we propose a novel way to use RNNs in a
stochastic framework based on the way stochasticity is taken into
account in LIM. LIM consists in tuning both the drift and the dif-
fusion term of an Ornstein–Uhlenbeck process to approximate a
stochastic process. First, the drift is optimized to approximate the
time series as if it were deterministic; then, the diffusion is chosen
so that the variances of both systems are identical. LIM is widely
used in climate research and stands as a simple approach giving
relatively good results (Barnston, Tippett, L’Heureux, Li, & DeWitt,
2012; Hawkins, Robson, Sutton, Smith, & Keenlyside, 2011; New-
man, 2013; Penland, 1996; Zanna, 2012).

To compare two stochastic processes, and thus to define what
it means to approximate a stochastic process, we use the relative
entropy (also known as Kullback–Leibler divergence) (Kullback
& Leibler, 1951). Although not a true distance, it displays many
interesting properties, interpretations and relationshipswith other
quantities such as the mutual information (Cover & Thomas, 2012)
or the rate function in large deviations theory (Ellis, 2005). It
also is computationally convenient (as opposed to theWasserstein
distance for instance), and has been widely used in machine
learning (Ackley, Hinton, & Sejnowski, 1985; Hinton, Osindero, &
Teh, 2006). Usually, this measure is used to compare the laws of
two discrete or continuous random variables, but it can also be
used to compare the laws of two stochastic processes in the path
space, which is at the basis of this paper. This way of measuring
the difference in law between two stochastic processes amounts
in performing a change of probabilities thanks to Girsanov
Theorem (Karatzas & Shreve, 1991),whose applications range from
mathematical finance (Avellaneda, Friedman, Holmes, & Samperi,
1997) to simulation methods for rare events (Wainrib, 2013). In
the context of recurrent neural networks, we have already shown
that the learning rule deriving from the minimization of relative
entropy has interesting biological features since it combines two
biologically plausible learning mechanisms (Galtier & Wainrib,
2013).

In this paper, we show how to train a noise-driven RNN to
minimize its relative entropy with respect to a target process. The
method consists two steps. First, the drift of the neural network
is trained by minimizing its relative entropy with respect to the
target (Section 3). Second, the noise matrix of the network is
determined based on a conservation principle similarly to LIM
(Section 4). We show how this approach extends the existing ESN
and LIM theory in Section 5. Numerical approximations to the
double well potential and to the El Niño phenomenon studied in
climate research are presented in Section 6.

Fig. 1. Structure and main notations of the neural network described in Section 2.

2. Model

We define here two mathematical objects that are, a priori,
unrelated: a stochastic time series and an autonomous RNN made
of two layers. The time series is assumed to be a sample path of
an underlying stochastic process which is themodeling target. The
objective is to make the RNN approximate the target process.

The target time series u is assumed to be the discretization of
an n-dimensional ergodic continuous process defined on the time
interval [0, T ]. The discretization step is chosen to be dt = 1which
corresponds to fixing the timescale. Imposing T ∈ N, u can be
seen as a matrix in Rn×T . For each t ∈ {1, . . . , T }, we use the no-
tation ut for the n-dimensional vector corresponding to the value
of the continuous target time series at time t . Similarly, we write
δut

def
= ut+1 − ut and δu ∈ Rn×T corresponding to the previous

definition (with the convention that δuT = 0).
The two-layer neural network is defined as follows. The first

layer, also called retina, has n neurons, as many as the target time
series dimension. We take v0t ∈ Rn to be the activity of the retina
at time t which will eventually approximate the target time se-
ries. The second layer, also called reservoir, hasm neurons. Because
each reservoir neuron does not directly correspond to a variable
of the target, they are said to be hidden neurons. We denote the
activity of the reservoir at time t by v1t ∈ Rm. Each layer has a
complete internal connectivity, recurrent connections, that is, all
neurons within a layer are interconnected. The two layers are in-
terconnected with feedforward, i.e. retina to reservoir, connec-
tions and feedback, i.e. reservoir to retina, connections, as shown
in Fig. 1(a). In this paper, according to a guiding principle in reser-
voir computing (Lukoševičius & Jaeger, 2009), the feedforward and
reservoir matrices W10 and W11 are drawn randomly and remain
unchanged. Only connections leading to retina neurons will be
adapted. These are collected inW = (W00 W01) ∈ Rn×(n+m).

The activity of each layer is governed by the following
differential law:
dv0t =


−v0t +W00v0t +W01v1t )dt +ΣdBt

dv1t = ϵ

−lv1t + s(W10v0t +W11v1t )


dt

(1)

where ϵ, l ∈ R+, s is a sigmoid function, e.g. tanh, that is applied
elementwise, i.e. s(x)i = s(xi), Σ ∈ Rn×n is the noise matrix and
Bt is an n-dimensional Brownian motion.

In order to unify LIM and ESNs, we submit this architecture to
certain restrictions. In particular, we choose the first layer to be
linear andwe choose a tanhnon-linearity in the reservoir. Later,we
will make a simple choice for a numerical differentiation scheme
for the same reason.
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