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a b s t r a c t

In this paper, the problem of globally synchronization is investigated for an array of N linearly coupled
singular complex networks with Markovian jump and mixed time-delays. The complex network systems
consist of m modes and the systems switch from one mode to another according to a Markovian chain
with known transition probability. The time delays include discrete delays and distributed delays. The
singular matrices in the consider systems are mode-dependent. By utilizing the Lyapunov–Krasovskii
stability theory, linear matrix inequality (LMI) approach, stochastic analysis techniques and Kronecker
product, some sufficient globally synchronization criteria are obtained. Several numerical examples are
given to illustrate the feasibility and effectiveness of the proposed methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, the researches on the dynamics of complex
networks have attracted extensive attention due to their ubiquity in
the nature world. Synchronization is a collective behavior phenom-
enon which not only exists extensively in nature, but also plays an
important role in theory and practice. It is widely believed that there
exist many benefits of having synchronization in many fields, such as
secure communication, modelling brain activity and pattern recogni-
tion phenomena [1–3]. In particular, one of the interesting phenomena
in complex networks is the synchronization, which is an important
research subject with the rapidly increasing research, and there are a
lot of results [4–6].

Recently, Markovian jump systems have received many increasing
research interests [7–9]. The reason that Markovian jump systems
have been paid a great deal of attention is that they are often
employed to model the abrupt phenomena such as random failures
of the components and sudden environmental changes. Markovian
jump systems are more complex than the systems without Markovian
jump parameters. The systems without Markovian jump parameters
have only one component in the state, but, Markovian jump systems
are the hybrid systems with two components in the state. On the
other hand, the singular Markovian jump systems with mode-

dependent singular matrices have been attracting increasing attention
[10]. This class of systems may have wide applications in practical
systems. The singular Markovian jump systems with mode-dependent
singular matrices may also have applications in other practical systems
[11]. Therefore, it is interesting and challenging to study the singular
Markovian jump systems with mode-dependent singular matrices.

Complex networks with Markovian jumping parameters are of
great significance in modelling complex networks with finite network
modes. Dynamics analysis problem of Markovian jumping systems
(MJSs) has stirred initial research interests [13,32]. A great number of
efforts have been made to investigate the issues of stability, stabiliza-
tion, and filtering of MJSs [30]. At the same time, several literatures
have been published concerning the synchronization analysis of the
complex networks with Markovian jumping parameters. For example,
in [12,14], the exponential synchronization problem of complex net-
works with Markovian jumping parameters and mixed delays is
investigated. However, it is worth pointing out that, up to now, all
the aforementioned results concerning dynamics analysis problems
for delayed complex networks with or without Markovian jumping
parameters have been applied to continuous-time models [15–20].
Both the discrete time delays and distributed time delays are
concerned in the researches of the synchronization problems [21–
26]. On the other hand, there has been a growing interest in singular
systems for their extensive application in control theory, economics,
circuits and other areas. Singular systems can be introduced to
improve the traditional complex networks to describe the singular
dynamic behaviors of nodes [27–31]. In [3], the synchronization
problem for singular hybrid coupled networks with time-varying
nonlinear perturbation is studied.
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Motivated by the above analysis, in this paper, we investigate
the problem of globally synchronization for singular complex
networks with Markovian jumping parameters as well as mode-
dependent mixed time delays. Note that the mixed time delays
comprise both the discrete and distributed delays that are depen-
dent on the Markovian jumping mode. By utilized a novel
Lyapunov–Krasovskii functional and the Kronecker product, the
novel delay dependent synchronization conditions are derived in
terms of linear matrix inequality (LMI). The LMI can be easily
solved by using the available Matlab LMI toolbox [28].

The main contributions of this paper consist in the develop-
ment of synchronization for complex networks. A new similar
structure has been given, where the singular matrix Ert taken into
consideration, while most previous works failed to do so. Mean-
while, the time-varying delays are mode-dependent. So, the
conclusion of this paper can ensure that the system is stable in
the random process and make the system have better anti-
jamming. Consequently, the delay-dependent sufficient condition
for stability is derived in terms of LMIs. The maximum values of
delays that the network can tolerate depend not only on the size of
the mixed time-varying delays, but also on the occurrence prob-
ability distribution of the stochastic discrete time-varying delay.
Moreover, the main criterion derived in this paper is successfully
extended to singular systems with Markovian jump parameters
and stochastic coupling delay, and numerical examples are given
to show the effectiveness of this application.

Notation: The notations are quite standard. Throughout this
paper, Rn and Rn�m denote, respectively, the n-dimensional Eucli-
dean space and the set of all n�m real matrices. For a real
symmetric matrix X and Y, the notation XZY (respectively, X4Y )
means that the matrix X�Y is semi-positive definite (respectively,
positive definite). I is the identity matrix with appropriate dimension.
O denotes a matrix with all the elements are zero. For symmetric
block matrices or long matrix expressions, the symbol “n” is used to
represent a term that is induced by symmetry. The superscript T
stands for the transpose of a matrix or a vector, diagð� � �Þ denotes a
block-diagonal matrix. The notation A � B stands for the Kronecker
product of matrices A and B. Let τ40 and Cð½�τ;0�;RnÞ denote the
family of continuous function φ, from ½�τ;0� to Rn with the norm
jφj ¼ sup� τr θr0 JφðθÞJ , where JxJ is the Euclidean norm in Rn.
Moreover, ðΩ;F ; fF tg; PÞ is a complete probability space with a
filtration fF tgtZ0 satisfying the usual conditions (i.e., the filtration
contains all P-null sets and is right continuous). Denote by
LF0 ð½�τ;0�;RnÞ the family of all F0-measurable Cð½�τ;0�;RnÞ-valued
random variable which satisfy sup� τr θr0EfJφðθÞJ2gr1. Ef�g
represents the mathematical expectation, that is JxJ2 ¼ xTx. λmaxð�Þ
means the largest eigenvalue of a matrix. Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

2. System formulation and preliminaries

Neural networks are often distributed by environmental noises
that affect the stability of the equilibrium point and by the varying
structure parameters that satisfy the Markov process. In this paper,
we introduce a more general model of complex networks compos-
ing of identical neural networks with Markovian jumping stochas-
tically hybrid couplings and both mixed time-delays as follows:

Ert _xiðtÞ ¼ �Drt xiðtÞþArt f ðxiðtÞÞþBrt gðxiðt�drt ÞÞ

þCrt

Z t

t� τrt

hðxiðsÞÞ dsþc
XN
j ¼ 1

GijΓrt xjðt�drt Þ ð1Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT ARn is the state vector associated
with n neurons; Ert is the singular matrix satisfying rankðErt Þ
¼ rrn; Drt ¼ diagfd1;rt ; d2;rt ;…; dn;rt g40 is a positive matrix; Art ;

Brt ;Crt ARn�n are respectively, the connection weight matrix, the
discretely delayed connection weight matrix and the distributively
delayed connection weight matrix; the matrices A0;rt ;B0;rt ;

C0;rt ;D0;rt ;D1;rt are known real constant matrices with appropriate
dimensions; the bounded functions drt and τrt represent unknown
the discrete time delay and the distributed delay of system with
0rdrt rdm, 0rτrt rτm; c40 represents coupling strength;
Γ ¼ diagfγ1; γ2;…; γng is a inner-coupling matrix; G¼ ðGijÞN�N

denotes the coupling configuration matrix, if there is a connection
between node i and j, then Gij ¼ Gji ¼ 1 ðia jÞ, otherwise Gij ¼ Gji ¼
0, the diagonal elements of matrix G are defined by

PN
j ¼ 1 Gij ¼

0 ði¼ 1;2;…;NÞ; frt ¼ rðtÞ; tZ0g is a homogeneous, finite-state
Markovian process with right continuous trajectories and taking
values in finite set U ¼ f1;2;…;mg with given probability space
ðΩ;F ; fF tg; PÞ and the initial mode r0; let Π ¼ ðπijÞ ði; jAUÞ, which
denotes the transition rate matrix with transition probability:

PrðrtþΔt ¼ j rtj ¼ iÞ ¼
πijΔtþoðΔtÞ; ia j

1þπiiΔtþoðΔtÞ; i¼ j

(
ð2Þ

where Δt40, limΔt-0ðoðΔtÞ=ΔtÞ ¼ 0, and πij is the transition rate
mode i to mode j satisfying πijZ0 for ia j with πii ¼
�Pm

j ¼ 1;ja i πij; i; jAU; φ0ðtÞ is a real-valued initial vector function
that is continuous on the interval ½�τ;0�, and
f ðxðtÞÞ ¼ ðf 1ðx1ðtÞÞ; f 2ðx2ðtÞÞ;…; f nðxnðtÞÞÞT

gðxðtÞÞ ¼ ðg1ðx1ðtÞÞ; g2ðx2ðtÞÞ;…; gnðxnðtÞÞÞT

hðxðtÞÞ ¼ ðh1ðx1ðtÞÞ;h2ðx2ðtÞÞ;…;hnðxnðtÞÞÞT

denote the continuous nonlinear vector functions.
Throughout this paper, we make the following assumptions,

definitions and lemmas:

Assumption 1 (Liu et al. [19]). Nonlinear functions f ð�Þ, gð�Þ and
hð�Þ are bounded functions satisfying f ð0Þ ¼ gð0Þ ¼ hð0Þ ¼ 0, and for
iAf1;2;…;ng there exist constant l�i , lþi , σ�

i , σþ
i , v�

i and vþ
i such

that

l�i r f iðs1Þ� f iðs2Þ
s1�s2

r lþi

σ�
i rgiðs1Þ�giðs2Þ

s1�s2
rσþ

i

v�
i rhiðs1Þ�hiðs2Þ

s1�s2
rvþ

i

for all s1; s2AR, s1as2, where l�i , lþi , σ�
i , σþ

i , v�
i and vþ

i are some
fixed constants.

Remark 1. Assumption 1 was first introduced in [15]. The con-
stants l�i , lþi , σ�

i , σþ
i , v�

i and vþ
i are allowed to be positive,

negative or zero. Hence, the resulting nonlinearities functions
maybe non-monotonic and more general that the usual sigmoid
functions and Lipschitz-type conditions. By adopting such pre-
sentation, it would be possible to reduce the conservatism of the
main results caused by quantifying the nonlinear functions via an
LMI technique.

Lemma 1 (Koo et al. [6]). Given any real matrix M40, any scalars a
and b with aob, and a vector function xðtÞ : ½a; b�-Rn such that the
integrals concerned as well defined, then

Z b

a
xðsÞ ds

" #T
M
Z b

a
xðsÞ ds

" #
rðb�aÞ

Z b

a
xT ðsÞMxðsÞ ds ð3Þ

Lemma 2 (Langville and Stewart [28]). By the definition of Kro-
necker product, the following properties hold:
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