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a b s t r a c t

Financial market dynamics forecasting has long been a focus of economic research. A stochastic time
effective function neural network (STNN) with principal component analysis (PCA) developed for
financial time series prediction is presented in the present work. In the training modeling, we first use
the approach of PCA to extract the principal components from the input data, then integrate the STNN
model to perform the financial price series prediction. By taking the proposed model compared with the
traditional backpropagation neural network (BPNN), PCA-BPNN and STNN, the empirical analysis shows
that the forecasting results of the proposed neural network display a better performance in financial
time series forecasting. Further, the empirical research is performed in testing the predictive effects of
SSE, HS300, S&P500 and DJIA in the established model, and the corresponding statistical comparisons of
the above market indices are also exhibited.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Financial price time series prediction has recently garnered
significant interest among investors and professional analysts.
Artificial neural network (ANN) is one of the technologies that
have made great progress in the study of stock market dynamics.
Neural networks can provide models for a large class of natural
and artificial phenomena that are difficult to handle using classical
parametric techniques [1–5]. Usually stock prices can be seen as a
random time sequence with noise, and a number of analysis
methods have utilized artificial neural networks to predict stock
price trends [6–11]. Artificial neural networks have good self-
learning ability, a strong anti-jamming capability, and have been
widely used in the financial fields such as stock prices, profits,
exchange rate and risk analysis and prediction [12–14].

To improve predicting precision, various network architectures and
learning algorithms have been developed in the literature [15–19]. The
backpropagation neural network (BPNN) is a neural network training
algorithm for financial forecasting, which has powerful problem-
solving ability. Multilayer perceptron (MLP) is one of the most
prevalent neural networks, which has the capability of complex
mapping between inputs and outputs that makes it possible to
approximate nonlinear function [19,20]. In the present work, we apply
MLP with backpropagation algorithm and stochastic time strength
function to develop a stock price volatility forecasting model. In the

real financial markets, the investing environments as well as the
fluctuation behaviors of the markets are not invariant. If all the data
are used to train the network equivalently, the expressing ability of
network is likely to be curtailed for policymakers concerning about the
current regular system. For example, see the Chinese stock markets in
2007, the data in the training set should be time-variant, reflecting the
different behavior patterns of the markets at different times. If only the
recent data are selected, a lot of useful information (which the early
data hold) will be lost. In this research, a stochastic time effective
neural network (STNN) and the corresponding learning algorithm are
presented. For this improved network model, each of historical data is
given a weight depending on the time at which it occurs. The degree
of impact of historical data on the market is expressed by a stochastic
process [17–19], where a drift function and the Brownian motion are
introduced in the time strength function in order to make the model
have the effect of random movement while maintaining the orig-
inal trend.

This paper presents an improved method which integrates the
principal component analysis (PCA) into a stochastic time strength
neural network (STNN) for forecasting financial time series, called
PCA-STNN model. The approach of PCA-STNN is to extract the
principal components (PCs) from the input data according to the
PCA method, and use PCs as the input of STNN model which can
eliminate redundancies of original information and remove the
correlation between the inputs [21–28]. In order to display that the
PCA-STNN model outperforms the PCA-BPNN model, the BPNN
model and the STNN model in forecasting the fluctuations of stock
markets, we compare the forecasting performance of the above four
forecasting models by selecting the data of the global stock indices,
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including Shanghai Stock Exchange (SSE) Composite Index, Hong
Kong Hang Seng 300 Index (HS300), Dow Jones Industrial Average
Index (DJIA), and Standard & Poor's 500 Index (S&P 500).

2. Methodology

2.1. Stochastic time effective neural network (STNN)

Artificial neural network has been extensively used as a
method to forecast financial market behaviors. The backpropaga-
tion algorithm has emerged as one of the most widely used
learning procedures for multilayer networks [27–29]. In Fig. 1, a
three-layer multi-input BPNN model is exhibited, the correspond-
ing structure is m� n� 1, where m is the number of inputs, n is
the number of neurons in the hidden layer and one output unit.
Let xit (i¼ 1;2;…;m) denote the set of input vector of neurons at
time t, and ytþ1 denote the output of the network at time tþ1.
Between the inputs and the output, there is a layer of processing
units called hidden units. Let zjt (j¼ 1;2;…;n) denote the output of
hidden layer neurons at time t, wij is the weight that connects the
node i in the input layer neurons to the node j in the hidden layer,
vj is the weight that connects the node j in the hidden layer
neurons to the node in the output layer. Hidden layer stage is as
follows: The input of all neurons in the hidden layer is given by

netjt ¼
Xn
i ¼ 1

wijxit�θj; i¼ 1;2;…;n: ð1Þ

The output of hidden neuron is given by

zjt ¼ f H netjt
� �¼ f H

Xn
i ¼ 1

wijxit�θj

 !
; i¼ 1;2;…;n ð2Þ

where θj is the threshold of neuron in hidden layer. The sigmoid
function in hidden layer is selected as the activation function:
f HðxÞ ¼ 1=ð1þe� xÞ. The output of the hidden layer is given as
follows:

ytþ1 ¼ f T
Xm
j ¼ 1

vjzjt�θT

0
@

1
A ð3Þ

where θj is the threshold of neuron in output layer and fT(x) is an
identity map as the activation function.

2.2. Predicting algorithm with a stochastic time effective function

The backpropagation algorithm is a supervised learning algo-
rithm which minimizes the global error E by using the gradient
descent method. For the STNN model, we assume that the error of
the output is given by εtn ¼ dtn �ytn and the error of the sample n is
defined as

E tnð Þ ¼ 1
2φðtnÞðdtn �ytn Þ2 ð4Þ

where tn is the time of the sample n (n¼ 1;…;N), dtn is the actual
value, ytn is the output at time tn, and φðtnÞ is the stochastic time
effective function which endows each historical data with a weight
depending on the time at which it occurs. We define φðtnÞ as
follows:

φtn ¼
1
β
exp

Z tn

t0
μðtÞ dtþ

Z tn

t0
σðtÞ dBðtÞ

� �
ð5Þ

where βð40Þ is the time strength coefficient, t0 is the time of the
newest data in the data training set, and tn is an arbitrary time
point in the data training set. μðtÞ is the drift function, σðtÞ is the
volatility function, and B(t) is the standard Brownian motion.

Intuitively, the drift function is used to model deterministic
trends, the volatility function is often used to model a set of
unpredictable events occurring during this motion, and Brownian
motion is usually thought as random motion of a particle in liquid
(where the future motion of the particle at any given time is not
dependent on the past). Brownian motion is a continuous-time
stochastic process, and it is the limit of or continuous version of
random walks. Since Brownian motion's time derivative is every-
where infinite, it is an idealized approximation to actual random
physical processes, which always have a finite time scale. We begin
with an explicit definition. A Brownian motion is a real-valued,
continuous stochastic process fYðtÞ; tZ0g on a probability space
ðΩ;F ;PÞ, with independent and stationary increments. In detail,
(a) continuity: the map s↦YðsÞ is continuous P a.s.; (b) independent
increments: if srt, Yt�Ys is independent of F ¼ ðYu;ursÞ;
(c) stationary increments: if srt, Yt�Ys and Yt� s�Y0 have the
same probability law. From this definition, if fYðtÞ; tZ0g is a
Brownian motion, then Yt�Y0 is a normal random variable with
mean rt and variance σ2t, where r and σ are constant real numbers.
A Brownian motion is standard (we denote it by B(t)) if Bð0Þ ¼ 0 P

a.s., E½BðtÞ� ¼ 0 and E½BðtÞ�2 ¼ t. In the above random data-time
effective function, the impact of the historical data on the stock
market is regarded as a time variable function, the efficiency of the
historical data depends on its time. Then the corresponding global
error of all the data at each network repeated training set in the
output layer is defined as

E¼ 1
N

XN
n ¼ 1

EðtnÞ ¼
1
2N

XN
n ¼ 1

1
β
exp

Z tn

t0
μðtÞ dtþ

Z tn

t0
σðtÞ dBðtÞ

� �
dtn �ytn
� �2

:

ð6Þ
The main objective of learning algorithm is to minimize the

value of cost function E until it reaches the pre-set minimum value
ξ by repeated learning. On each repetition, the output is calculated
and the global error E is obtained. The gradient of the cost function
is given by ΔE¼ ∂E=∂W . For the weight nodes in the input layer,
the gradient of the connective weight wij is given by

Δwij ¼ �η
∂EðtnÞ
∂wij

¼ ηεtn vjφðtnÞf 0Hðnetjtn Þxitn ð7Þ

and for the weight nodes in the hidden layer, the gradient of the
connective weight vj is given by

Δvj ¼ �η
∂EðtnÞ
∂vj

¼ ηεtnφðtnÞf Hðnetjtn Þ ð8Þ
Fig. 1. Three-layer neural network with one-output.

J. Wang, J. Wang / Neurocomputing 156 (2015) 68–78 69



Download English Version:

https://daneshyari.com/en/article/406236

Download Persian Version:

https://daneshyari.com/article/406236

Daneshyari.com

https://daneshyari.com/en/article/406236
https://daneshyari.com/article/406236
https://daneshyari.com

