
Brief Papers

Synchronization control of stochastic memristor-based neural
networks with mixed delays

Yinfang Song a,n, Shiping Wen b,c

a School of Information and Mathematics, Yangtze University, Jingzhou 434023, China
b Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
c Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China

a r t i c l e i n f o

Article history:
Received 7 October 2014
Received in revised form
20 December 2014
Accepted 31 December 2014
Communicated by Z. Wang
Available online 9 January 2015

Keywords:
Memristor
Stochastic neural networks
Mixed delays
Synchronization control

a b s t r a c t

In this paper, the synchronization control of stochastic memristor-based neural networks with mixed delays is
studied. Based on the drive-response concept, the stochastic differential inclusions theory and Lyapunov
functional method some new criteria are established to guarantee the exponential synchronization in the pth
moment of stochastic memristor-based neural networks. The obtained sufficient conditions can be checked
easily and improve the results in earlier publications. Finally, a numerical example is given to illustrate the
effectiveness of the new scheme.

& 2015 Published by Elsevier B.V.

1. Introduction

In 1971, based on physical symmetry arguments, Chua [1] con-
ceived and predicted that besides the resistor, capacitor and inductor,
there should be a fourth fundamental two-terminal circuit element
called a memristor, defined by a nonlinear relationship between
charge and flux linkage. In 2008, members of the Hewlett-Packard
Laboratories [2] realized the memristor in devise form. The memris-
tor is a two-terminal passive device whose value depends on the
magnitude and polarity of the voltage applied to it and the length of
the time that the voltage has been applied. In other words, the
memristor has variable resistance and exhibits the memory char-
acteristic. For these properties, it is shown that the memristor device
has many promising applications such as device modeling, signal
processing, one of which is to emulate synaptic behavior [3–8]. As we
know, the artificial neural networks can be realized by nonlinear
circuits. In the circuits, the connection weights are implemented by
fixed value resistors, which are supposed to represent the strength of
synaptic connections between neurons in brain. The strength of
synapses changes and accords with Hebbian learning rule while the
resistance is invariable [9,10]. Therefore, in order to simulate the
artificial neural network of human brain better, the resistor is

replaced by the memristor, which leads to a new model of neural
networks (memristor-based neural networks).

During the past decade, there has been increasing interest in
potential applications of chaos synchronization of dynamics systems
in many areas such as secure communication, image processing, and
harmonic oscillation generation [11–13]. In addition, we note that a
plethora of complex nonlinear behaviors including chaos appear even
in a simple network of memristor, so a detailed analytical study of
synchronization problem of the basic oscillator is necessary. Recently,
some achievements about synchronization control of memristor-
based neural networks have been obtained. For instance, Wu et al.
[14] discussed the synchronization control of a general class of
memristor-based recurrent neural networks with time delays.
A delay-independent feedback controller is derived based on the
drive-response concept, linear matrix inequalities and Lyapunov
functional method. Furthermore, Wang and Shen [16] improved the
results by employing the Newton–Leibniz formulation and novel
inequality technique, and Chandrasekar et al. [17] extended the
notion of synchronization of the memristor-based recurrent neural
networks with two delay components based on second-order reci-
procally convex approach. According to the fuzzy theory, Wen et al.
[18] analyzed the global exponential synchronization of memristor-
based recurrent neural networks. For more related research, refer to
[15,19,20].

On the other hand, in real nervous systems, synaptic transmis-
sion is a noisy process brought on by random fluctuations from
the release of neurotransmitters and other probabilistic causes.
Thus, noise is unavoidable in actual applications of artificial neural

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.12.077
0925-2312/& 2015 Published by Elsevier B.V.

n Corresponding author. Tel.: þ86 716 8060182.
E-mail addresses: songyinfang2006@sina.com (Y. Song),

wenshiping226@126.com (S. Wen).

Neurocomputing 156 (2015) 121–128

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.12.077
http://dx.doi.org/10.1016/j.neucom.2014.12.077
http://dx.doi.org/10.1016/j.neucom.2014.12.077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.077&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.077&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.077&domain=pdf
mailto:songyinfang2006@sina.com
mailto:wenshiping226@126.com
http://dx.doi.org/10.1016/j.neucom.2014.12.077


networks. Meanwhile, stochastic perturbations may make impor-
tant effects on the dynamic behaviors of delayed system, and a
neural network could be stabilized or destabilized by certain
stochastic inputs [21,22]. Therefore, it is significant and of prime
importance to consider stochastic effects to the synchronization of
neural networks with delays. Some results concerning stochastic
neural networks have already been presented. Especially, Sun et al.
[23] dealt with the exponential synchronization problem for a class
of stochastic perturbed chaotic delayed neural networks. By virtue
of stochastic analysis, Halanay inequality, time-delay feedback
control techniques, several sufficient conditions are proposed to
guarantee the exponential synchronization of two identical delayed
neural networks with stochastic perturbation. Yu and Cao [24]
introduced a novel control method to ensure the global asympto-
tical stability in mean square for error system based on the
Lyapunov functional method and linear matrix inequality technique.
Furthermore, Li et al. [25] studied the exponential synchronization
of stochastic perturbed chaotic neural networks with mixed delays
based on output coupling with delay feedback and linear matrix
inequality approach. Liu et al. [26] examined the pth moment
exponential synchronization of a class of stochastic perturbed
chaotic neural networks with time-varying delays and unbounded
distributed delays by establishing two new integro-differential
inequalities. Recently, a stochastic memristor-based neural networks
is proposed in [27] and the global exponential stability in the mean
square for this system is considered. However, to the best of our
knowledge, the research on global exponential synchronization of
stochastic memristor-based neural networks is still an open problem.

Motivated by the above discussion, we focus our attention on the
synchronization problem of stochastic memristor-based neural net-
works with mixed delays. The main contributions of this paper are
to design feedback controllers and give some sufficient conditions to
ensure the exponential synchronization in the pth moment of the
neural networks system based on the drive-response concept, the
stochastic differential inclusions theory and Lyapunov functional
method. In this paper, the mixed delays are considered which made
the Lyapunov functional become more complicated compared with
the ones in [14–20]. Moreover, some inequality techniques are
introduced. Our results could be considered as a continuation of
the ones in [27]. The structure of this paper is outlined as follows.
Some preliminaries are introduced in Section 2. The main results are
given in Section 3. And numerical simulations are given to demon-
strate the effectiveness of the proposed approach in Section 4. In the
last section, a conclusion is drawn.

2. Model description and preliminaries

In this section, referring to some relevant works in [14–20],
which deal with the detailed construction of some general classes of
memristor-based recurrent neural networks from the aspects of
circuit analysis and memristor physical properties, and taking
random disturbances into account, we propose a class of stochastic
memristor-based neural networks model with discrete and distrib-
uted delays described by the following stochastic differential
equations:
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Xn
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þβiðt; xiðtÞ; xiðt�τðtÞÞ dωiðtÞ; i¼ 1;2;…;n; ð1Þ

where xðtÞ ¼ ðx1ðtÞ;…; xnðtÞÞT denote the voltage applied on
capacitor Ci. The self-feedback connection matrix is D¼
diagfd1; d2;…; dng with di40; i¼ 1;2;…;n. f ðxðtÞÞ ¼ ðf 1ðx1ðtÞÞ;
f 2ðx2ðtÞÞ;…; f nðxnðtÞÞÞT represents the neuron feedback functions.
ðω1ðtÞ;ω2ðtÞ;…;ωnðtÞÞT is n dimensional Brownmotion. τðtÞ;ρðtÞ are
two time-varying delays satisfying 0rτðtÞrτ1, 0rρðtÞrτ2,
jτ0ðtÞjrσo1. aijðxiðtÞÞ; bijðxiðtÞÞ and cijðxiðtÞÞ are memristive synap-
tic connection weights, and
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in which Mij; ~Mij;Mij denote the memductances of memristors
Rij; ~Rij;Rij, respectively. In addition, Rij represents the memristor
between the feedback function f iðxiðtÞÞ and xi(t), ~Rij represents the
memristor between the feedback function f iðxiðt�τðtÞÞ and xi(t),
and ~Rij represents the memristor between the feedback functionR t
t�ρðtÞ f iðxiðsÞÞ ds and xi(t). As is well known, capacitor Ci is invariant
while memductances of memristors Mij; ~Mij;Mij respond to change
in pinched hysteresis loops [14,17–19]. Consequently, aijðxiðtÞÞ;
bijðxiðtÞÞ and cijðxiðtÞÞ will change. Based on the feature of memristor
and current–voltage characteristic, we let

aijðxiðtÞÞ ¼
âij; jxiðtÞjrTi

�aij; jxiðtÞj4Ti;

(
bijðxiðtÞÞ ¼

b̂ij; j xiðtÞjrTi

�bij; j xiðtÞj4Ti;

8<
:

cijðxiðtÞÞ ¼
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(

for i; j¼ 1;2;…;n, where âij; �aij; b̂ij;
�bij, ĉ ij; �cij are known constants

with respect to memristance. Moreover, the initial condition of
system (1) is assumed to be xðsÞ ¼φðsÞ;φðsÞACð½�τ;0�;RnÞ; τ¼
maxfτ1; τ2g.

Remark 1. According to the analysis above, aijðxðtÞÞ; bijðxðtÞÞ;
cijðxðtÞÞ in this network are changed according to the state of the
system as memristance are switched. Therefore, memristor-based
neural networks is considered as a stochastic system with state-
dependent switching. When aijðxðtÞÞ; bijðxðtÞÞ; cijðxðtÞÞ are constants,
(1) becomes the general stochastic recurrent neural networks.

Throughout this paper, solutions of all the system considered in the
following are intended in Filippov's sense, where ½�; �� represents the
interval. Rn and Rn�m are the n-dimensional Euclidean space and the set
of all m�n real matrices respectively, and xA x1; x2;…; xnf gT ARn

denotes a column vector defined by JxJ ¼ ðPn
i ¼ 1 jxijpÞ1=p; pZ1.

Cð½�τ;0�;RnÞ is a Banach space of all continuous functions.
ðΩ;F ; fF tgtZ0; PÞ is a complete probability space with a natural
filtration fF tgtZ0 satisfying the usual condition. Let LpF0

ð½�τ;0�;RnÞ
be the family of all F 0�measurable Cð½�τ;0�;RnÞ�valued random
variables ξ¼ fξðsÞ : �τrsr0g such that sup� τr sr0EjξðsÞjpo1. Set

aij ¼maxfâij; �aijg, aij ¼minfâij; �aijg, bij ¼maxfb̂ij;
�bijg, bij ¼minfb̂ij;

�bijg,
cij ¼maxfĉ ij; �cijg, cij ¼minfĉ ij; �cijg, A ¼ ðaijÞn�n, A ¼ ðaijÞn�n, B ¼
ðbijÞn�n, B ¼ ðbijÞn�n, C ¼ ðcijÞn�n, C ¼ ðcijÞn�n for i; j¼ 1;2;…;n.

co½u; v� denotes closure of the convex hull generated by real numbers
u and v or real matrices u and v. diagf⋯g stands for a block-diagonal
matrix. The superscript “T” denotes the transposition and the notation
XrY (similarly, X4Y), where X and Y are symmetric matrices, means
that X�Y is positive semi-definite (similarly, positive definite).

By applying the theories of set-valued maps and stochastic
differential inclusions above, the memristor-based network (1) can
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