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In this paper motivated by recently discovered neurocognitive models of mechanisms in the brain, a new
reinforcement learning (RL) method is presented based on a novel critic neural network (NN) structure
to solve the optimal tracking problem of a nonlinear discrete time-varying system in an online manner. A
multiple-model approach combined with an adaptive self-organizing map (ASOM) neural network is
used to detect changes in the dynamics of the system. The number of sub-models is determined
adaptively and grows once a mismatch between the stored sub-models and the new data is detected. By
using the ASOM neural network, a novel value function approximation (VFA) scheme is presented. Each
sub-model contributes into the value function based on a responsibility signal obtained by the ASOM.
The responsibility signal determines how much each sub-model contributes to the general value
function. Novel policy iteration and the value iteration algorithms are presented to find the optimal
control for the partially-unknown nonlinear discrete time-varying systems in an online manner.
Simulation results demonstrate the effectiveness of the proposed control scheme.
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1. Introduction

Design of feedback controllers for unknown and uncertain
systems has been widely considered in the control system com-
munity due to its potential applications in industry. Accordingly,
numerous adaptive and robust control methods have been pro-
posed to deal with system uncertainties. Neural networks (NNs)
have been extensively used to develop stable and robust adaptive
controllers to compensate for uncertainties and disturbances.
However, most existing work in the literature concerns only the
stability of adaptive NN controllers and not other performance
criteria. Recently, a great deal of interest in developing adaptive
optimal controller using NNs has been witnessed [1-6]. These
methods learn the optimal solution successfully for both known
and unknown, but time-invariant systems. However, in many real
world situations the controlled system dynamics are subjected to
abrupt changes caused by component failures or repairs, changing
sub-model interconnections, or sudden changes in environmental
factors, etc.

* Corresponding author at: 7300 Jack Newell Blvd S, Fort Worth, TX, USA, 76118.
Tel.: +6822410845.
E-mail address: kiumarsi@uta.edu (B. Kiumarsi).

http://dx.doi.org/10.1016/j.neucom.2014.12.067
0925-2312/© 2014 Elsevier B.V. All rights reserved.

In past decades, multiple-model methods have been presented
for control of complex and/or time-varying systems. One approach
of the multiple-model methods assumes that a nonlinear process
with a high degree of uncertainty is represented by a collection of
linear models with a low degree of uncertainty. Another approach
to the multiple-model is that, for a system under abrupt changes
in dynamics, several models are considered and each model
belongs to a distinct subset of the system behavioral space. In
multiple-model approaches, a controller is assigned corresponding
to each sub-model, then at each time, an active controller is
selected using a supervisory unit (which is usually an estimator-
based supervisor) using logical decision rules. The supervisory
either switches between the different sub-model controllers or
combine them together based on certain criteria. Both fixed and
adaptive models have been used for control and identification of
time-varying dynamical systems [7-13]. Existing multiple-model
approaches can guarantee stability of the system dynamics but
they are generally far from optimal.

Reinforcement learning (RL) refers to a class of methods that
enable the design of adaptive optimal controllers for uncertain
dynamical systems. RL methods learn online, in real time, the
solutions to user-prescribed optimal control problems for uncer-
tain systems using only measured data from the controlled system
[14-20]. RL mechanisms operate in the human brain, where the
dopamine neurotransmitter in the basal ganglia acts as a


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.12.067
http://dx.doi.org/10.1016/j.neucom.2014.12.067
http://dx.doi.org/10.1016/j.neucom.2014.12.067
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.067&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.067&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.12.067&domain=pdf
mailto:kiumarsi@uta.edu
http://dx.doi.org/10.1016/j.neucom.2014.12.067

158 B. Kiumarsi et al. / Neurocomputing 156 (2015) 157-165

reinforcement informational signal that provides learning at the
level of the neuron [21]. One type of reinforcement learning
algorithm employs the actor-critic structure [22]. This structure
produces forward-in-time algorithms that are implemented in real
time where in an actor component applies an action, or control
policy, to the environment, and a critic component assesses the
value of that action. The learning mechanism supported by the
actor-critic structure has two steps, namely, policy evaluation,
executed by the critic, followed by policy improvement, performed
by the actor.

The standard RL algorithms cannot be used for time-varying
systems with abrupt changes in dynamics. To overcome this issue, in
[23], an RL architecture based on multiple-model approach is pre-
sented. In this multiple-model approach, each sub-model consists of
a state prediction model and an actor-critic controller. However, in
the method of [23], it is implicitly assumed that the number of sub-
models is known a priori, which may not be realistic. Moreover, state
derivatives prediction errors are used to classify sub-models. This
requires identifying of the system dynamics in each sub-model.

Recent research in neurocognitive psychology shows that there are
several actor-critic structures in the brain [23-25]. The actor-critic
structure of basal ganglia, cerebellum, and muscle motor control is
well known, with dopamine neurons in the basal ganglia providing
the RL mechanism. Humans naturally trade off open-loop control
based on stored memories and closed-loop control based on real-time
learning for different tasks and spatial contexts. Emotion and past
stored experiences can significantly affect decision-making in humans.
The work in [26-28] details how stored behavior patterns can be used
to enact fast decisions by drawing on previous experiences when there
is a match between observed attributes and stored patterns. In the
event of risk, mismatch, or anxiety, higher-level control mechanisms in
the brain are recruited that involve more deliberative actions based on
refinements in current real-time observations.

There are several interactions between relevant brain regions.
First, in the amygdala and orbital frontal cortex (OFC) interaction, the
amygdala seems to play a role in determining which aspects of a
problem are relevant for decisions. If the match of a problem with
previously seen situations is close, decision activity occurs primarily
in the amygdala-OFC system. Second, in the interaction of the anterior
cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC), if
mismatch occurs, decision involving higher-order cognition is
required. This involves recruiting higher-level brain structures includ-
ing the ACC and DLPFC. In these activities, real-time information from
the environment is more closely examined to construct closed-loop
feedback controls that perform better with guaranteed results. ACC
and DLPFC seem to be recruited in emotionally undesirable decisions
that do not match previously stored successful situations or have
increased complexity. These regions play a role in selective attention,
dynamic focusing of awareness onto the details in a problem, and in
deliberative cognition [29-31].

Self-organizing map (SOM) is a very well established method in
the field of neural networks [32,33]. The SOM has been used in many
industrial applications. An important application of SOM is clustering,
which attempt to organize unlabeled input vectors into clusters or
“natural groups” such that points within a cluster are more similar to
each other than vectors belonging to different clusters. The main
shortcoming of the SOM is that it requires either specifying the
number of clusters in advance. To overcome this restriction, adaptive
SOM algorithm has been proposed.

Motivated by recent neurocognitive models of mechanisms in the
brain, a new interacting structure of RL approach is presented in this
paper to find the optimal policy for a time-varying system without
requiring to have or to identify the knowledge of the drift system
dynamics. The number of the sub-models is not assumed to be fixed,
and is growing adaptively based on some criteria. A multiple model
approach combined with adaptive self-organizing map (ASOM)

network is used to detect the change on the dynamics of the system.
The ASOM operates similar to the amygdala-OFC and the ACC-DLPFC
in the brain. The number of sub-models is determined adaptively and
grows once a mismatch between the stored sub-models and the new
data is detected. That is, once the performance of the existing sub-
models is not satisfactory, a new sub-model is needed. By using the
ASOM neural network, a new structure for approximating the optimal
value function of the discrete time-varying systems is presented. Each
sub-model contributes into the value function based on a responsi-
bility signal obtained by the ASOM. The responsibility signal of each
sub-model at each time is an indication of how likely the current
input is to be generated by the sub-models at that time. Based on the
presented value function, policy iteration and value iteration algo-
rithms are presented to find the optimal control for the discrete time-
varying systems. The knowledge of the drift system dynamics of sub-
models is not required to be known or to be identified and the
optimal control is obtained using measured data in real time.
The contributions of the paper are as follows.

1. Motivated by neurocognitive models of amygdala-OFC mechan-
isms in the brain, an adaptive self-organizing map (ASOM)
neural network is used to cluster input-output data into differ-
ent regions, each belonging to different sub-models. The number
of sub-models is assumed unknown. New sub-models are built
incrementally, in real time.

2. A new structure for approximation and updating of the value
function is presented for discrete time-varying systems that is
based on different sub-models to allow the use of previous exp-
erience in fast response to environmental cues. In this structure,
the value function approximation (VFA) can be realized through
cooperative learning in the sense that each sub-model learns not
only from data samples from its corresponding region, but also
from samples from its neighboring regions.

3. We present a partially model free method for discrete time-
varying systems based on reinforcement learning. The pro-
posed method does not require identifying or complete dyna-
mics of the sub-models. It finds the optimal solution using only
measured data.

This paper is organized as follows. Optimal tracking control for
nonlinear time-varying systems is presented in Section 2. New
formulation for the nonlinear tracking problem is presented in
Section 3. New value function structure and adaptive self-organi-
zing map neural network for the nonlinear discrete time-varying
systems are proposed in Section 4. In Section 5, online policy
iteration and value iteration algorithms are developed to solve the
optimal control problem for partially unknown nonlinear discrete
time-varying systems. Simulation results of the mentioned algo-
rithms are presented in Section 6.

2. Optimal tracking control for nonlinear time-varying
systems

In this section the optimal tracking problem for nonlinear
discrete time-varying systems is defined. Consider the nonlinear
affine discrete time-varying system given by

xX(k+1) = f(x(k), k) +g(x(k)) u(k) 1)

where x(k) e R" represents the state vector of the system, u(k) e R™
represents the control vector, f(x(k), k) € R" is the drift dynamics of the
system, and g(x(k)) e R™*™ is the input dynamics of the system.
Assume that f(0)=0 and f(x)+g(x)u is Lipschitz continuous on a
compact set £2 which contains the origin, and the system (1) is
controllable in the sense that there exists a continuous control on £2
which stabilizes the system. The drift dynamics is assumed to be under
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