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a b s t r a c t

In this paper, a novel adaptive dynamic programming (ADP) algorithm is developed to solve the nearly
optimal finite-horizon control problem for a class of deterministic nonaffine nonlinear time-delay
systems. The idea is to use ADP technique to obtain the nearly optimal control which makes the optimal
performance index function close to the greatest lower bound of all performance index functions within
finite time. The proposed algorithm contains two cases with respective different initial iterations. In the
first case, there exists control policy which makes arbitrary state of the system reach to zero in one time
step. In the second case, there exists a control sequence which makes the system reach to zero in
multiple time steps. The state updating is used to determine the optimal state. Convergence analysis of
the performance index function is given. Furthermore, the relationship between the iteration steps and
the length of the control sequence is presented. Two neural networks are used to approximate the
performance index function and compute the optimal control policy for facilitating the implementation
of ADP iteration algorithm. At last, two examples are used to demonstrate the effectiveness of the
proposed ADP iteration algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time-delay phenomenons are often encountered in physical and
biological systems, and require special attention in engineering
applications [1]. Transportation systems, communication systems,
chemical processing systems, metallurgical processing systems and
power systems are examples of time-delay systems. Delays may result
in degradation in the control efficiency even instability of the control
systems [2]. So there have been many works about systems with time
delays in various research areas such as electrical, chemical engineer-
ing and networked control [3]. In the past few decades, the stabiliza-
tion and the control of time-delay systems have always been the key
focus in the control field [4–7]. Furthermore, there are many
researchers who studied the controllability of linear time-delay
systems [8–10]. They proposed some related theorems to judge the
controllability of the linear time-delay systems. In addition, the
optimal control problem is often encountered in industrial production.
So the investigation of the optimal control for time-delay systems is
significant. In [11] Chyung has pointed out the disadvantages of
discrete time-delay system written as an extended system by

increasing the dimension method to deal with the optimal control
problem. So some direct methods for linear time-delay systems were
presented in [11,12]. While for nonlinear time-delay system, due to
the complexity of systems, the optimal control problem is rarely
researched. This motivated our research interest.

As is well known, dynamic programming is very useful in solving
the optimal control problems [13–15]. But it is often computationally
untenable to run dynamic programming [16]. In the early 1970s,
Werbos set up the basic strategy for ADP [17] to overcome the “curse
of dimensionality” of dynamic programming. In [18], Werbos classi-
fied ADP approaches into four main schemes: heuristic dynamic
programming (HDP), dual heuristic dynamic programming (DHP),
action dependent heuristic dynamic programming (ADHDP), and
action dependent dual heuristic dynamic programming (ADDHP). In
recent years, ADP algorithms have made great progress [19–24]. In
[25], an iteration ADP scheme with convergence proof was proposed
for solving the optimal control problem of nonlinear discrete-time
systems. In [26], an optimal tracking controller was proposed for a
class of nonlinear discrete-time systems with time delays based on a
novel HDP algorithm. In [27], a ADP-based optimal control is
developed for complex-valued systems. Note that most of the results
of the present study are about the infinite-horizon optimal control.
The system cannot be really stabilized or tracked until the time
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reaches infinity. While for finite-horizon control problems, the
system must be stabilized to zero or tracked to a desired trajectory
within finite time. The controller design of finite-horizon problems
still presents a challenge to control engineers as the lack of
methodology and the control step is difficult to determine. Few
results relate to the finite-horizon optimal control based on ADP
algorithm. As we know that [28] solved the finite-horizon optimal
control problem for a class of discrete-time nonlinear systems using
ADP algorithm. But the method in [28] cannot be used in nonlinear
time-delay systems. As the delay states in time-delay systems are
coupling with each other. The state of current time k is decided by the
states before k and the control law, while the control law is not
known before it is obtained. So based on the research results in [28],
we proposed a new ADP algorithm to solve the nearly finite-horizon
optimal control problem for discrete time-delay systems through the
framework of Hamilton–Jacobi–Bellman (HJB) equation.

In this paper the optimal controller is designed based on the
original time-delay systems, directly. The state updating method is
proposed to determine the optimal state of the time-delay system.
For finite-horizon optimal control, the system can reach to zero when
the final running step N is finite. But it is impossible in practice. So
the results in this paper are in the sense of an error bound. The main
contributions of this paper can be summarized as follows:

1. The finite-horizon optimal control for deterministic discrete
nonaffine time-delay systems is studied based on the ADP
algorithm.

2. The state updating is used to determine the optimal states of
HJB equation.

3. The relationship between the iteration steps and the length of
the control sequence is given.

This paper is organized as follows. In Section 2, the problem
formulation is presented. In Section 3, the nearly finite-horizon
optimal control scheme is developed based on the iteration ADP
algorithm and the convergence proof is given. In Section 4, two
examples are given to demonstrate the effectiveness of the proposed
control scheme. In Section 5, the conclusion is drawn.

2. Problem statement

Consider a class of deterministic nonaffine time-delay non-
linear systems

xðtþ1Þ ¼ FðxðtÞ; xðt�h1Þ; xðt�h2Þ;…; xðt�hlÞ;uðtÞÞ;
xðtÞ ¼ χðtÞ; �hlrtr0 ð1Þ
where xðtÞARn is the state and xðt�h1Þ;…; xðt�hlÞARn are time-
delay states. uðtÞARm is the system input. χðtÞ is the initial state,
hi, i¼ 1;2;…; l, is the time delay, set 0oh1oh2o…ohl, and they
are nonnegative integer numbers. FðxðtÞ; xðt�h1Þ; xðt�h2Þ;…; x
ðt�hlÞ;uðtÞÞ is the known function. Fð0;0;…;0Þ ¼ 0.

For any time step k, the performance index function for state x
(k) under the control sequence Uðk;Nþk�1Þ ¼ ðuðkÞ;uðkþ1Þ;…;u
ðNþk�1ÞÞ is defined as

JðxðkÞ;Uðk;Nþk�1ÞÞ ¼
XNþk�1

j ¼ k

fxT ðjÞQxðjÞþuT ðjÞRuðjÞg; ð2Þ

where Q and R are positive definite constant matrixes.
In this paper, we focus on solving the nearly finite-horizon optimal

control problem for system (1). The feedback control u(k) must not
only stabilize the system within finite time steps but also guarantee
the performance index function (2) to be finite. So the control
sequence Uðk;Nþk�1Þ ¼ ðuðkÞ;uðkþ1Þ;…;uðNþk�1ÞÞ must be
admissible.

Definition 1. N time steps control sequence: for any time step k,
we define the N time steps control sequence Uðk;Nþk�1Þ ¼ ðuðkÞ;
uðkþ1Þ;…;uðNþk�1ÞÞ. The length of Uðk;Nþk�1Þ is N.

Definition 2. Final state: we define final state xf ¼ xf ðxðkÞ;
Uðk;Nþk�1ÞÞ, i.e., xf ¼ xðNþkÞ.

Definition 3. Admissible control sequence: an N time steps con-
trol sequence is said to be admissible for x(k), if the final state
xf ðxðkÞ;Uðk;Nþk�1ÞÞ ¼ 0 and JðxðkÞ;Uðk;Nþk�1ÞÞ is finite.

Remark 1. Definitions 1 and 2 are used to state conveniently the
admissible control sequence, i.e. Definition 3, which is necessary
for the theorems of this paper.

Remark 2. It is important to point out that the length of control
sequence N cannot be designated in advance. It is calculated by the
proposed algorithm. If we calculate that the length of optimal
control sequence is L at time step k, then we consider that the
optimal control sequence length at time step k is N¼L.

According to the theory of dynamics programming [29], the
optimal performance index function is defined as

JnðxðkÞÞ ¼ inf
Uðk;Nþk�1Þ

JðxðkÞ;Uðk;Nþk�1ÞÞ ð3Þ

JnðxðkÞÞ ¼ inf
uðkÞ

xT ðkÞQxðkÞþuT ðkÞRuðkÞþ Jnðxðkþ1ÞÞ� �
; ð4Þ

and the optimal control policy is

unðkÞ ¼ arg inf
uðkÞ

xT ðkÞQxðkÞþuT ðkÞRuðkÞþ Jnðxðkþ1ÞÞ� �
; ð5Þ

so the state under the optimal control policy is

xnðtþ1Þ ¼ FðxnðtÞ; xnðt�h1Þ;…; xnðt�hlÞ;unðtÞÞ; t ¼ 0;1;…; k;…;

ð6Þ
and then, the HJB equation is written as

JnðxnðkÞÞ ¼ JðxnðkÞ;Unðk;Nþk�1ÞÞ
¼ ðxnðkÞÞTQxnðkÞþðunðkÞÞTRunðkÞþ Jnðxnðkþ1ÞÞ: ð7Þ

Remark 3. From Remark 2, we can see that the length N of the
optimal control sequence is unknown finite number and cannot be
designated in advance. So we can say that if at time step k, the
length of the optimal control sequence is N, then at time step kþ1,
the length of the optimal control sequence is N�1. Therefore, the
HJB equation (7) is established.

In the following, we will give an explanation about the validity
of Eq. (3). First, we define Unðk;Nþk�1Þ ¼ ðunðkÞ;unðkþ1Þ;…;

unðNþk�1ÞÞ, i.e.
Unðk;Nþk�1Þ ¼ arg inf

Uðk;Nþk�1Þ
JðxðkÞ;Uðk;Nþk�1ÞÞ: ð8Þ

Then we have

JnðxðkÞÞ ¼ inf
Uðk;Nþk�1Þ

JðxðkÞ;Uðk;Nþk�1ÞÞ

¼ JðxðkÞ;Unðk;Nþk�1ÞÞ: ð9Þ
Then according to (2), we can get

JnðxðkÞÞ ¼
XNþk�1

j ¼ k

fxT ðjÞQxðjÞþðunðjÞÞTRunðjÞg

¼ xT ðkÞQxðkÞþðunðkÞÞTRunðkÞþ⋯þxT ðNþk�1ÞQxðNþk�1Þ

þðunðNþk�1ÞÞTRunðNþk�1Þ: ð10Þ
Eq. (10) can be written as

JnðxðkÞÞ ¼ xT ðkÞQxðkÞþðunðkÞÞTRunðkÞþ⋯þxT ðNþk�2ÞQxðNþk�2Þ
þðunðNþk�2ÞÞTRunðNþk�2Þ
þ inf

uðNþk�1Þ
fxT ðNþk�1ÞQxðNþk�1Þ

þuT ðNþk�1ÞRuðNþk�1Þg: ð11Þ
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