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a b s t r a c t

In this paper, the finite-time state estimation problem of delayed Hopfield neural networks with
Markovian jump is investigated. The activation functions are assumed to satisfy the section condition. A
discontinuous estimator is designed through available output measurements such that the estimation
error converges to the origin in finite time. The conditions that the desired estimator parameters need to
satisfy are derived by using the Lyapunov stability theory and inequality technique. These conditions are
provided in terms of the linear matrix inequalities. Finally, the effectiveness of the proposed method is
illustrated by means of a numerical example.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, neural networks have been applied in
various areas such as signal processing, parallel computation and
optimization solvers [1–4]. In these applications, it is necessary to
study the dynamical behaviors of the neural networks such as
stability, robustness and oscillation. Specially, time delays are often
encountered in dynamical systems, which sometimes may cause
these dynamical systems instability and oscillations. Thus, the
analysis of delayed neural networks has attracted much research
attention and there exist many related results such as [5–8].

It should be pointed out that, for the neural networks composed
of large scale neurons, the neuron states usually are not completely
available in applications. Thus, we need to estimate the neuron
states according to available output measurement and use them to
design controller to achieve a given control target, which results in
some researchers paying great attention to the state estimation
problem of neural networks. For example, for the continuous neural
networks, two kinds of guaranteed performance state estimators of
static neural networks with time-varying delays are concerned in
[9]. The authors investigated the H1 state estimation problem for
static neural networks with time-varying delays, and both delay-
dependent and delay-independent criteria are presented such that
the error system is globally asymptotically stable with a guaranteed
H1 performance in [10]. For the discrete cases, the authors investi-
gated the state estimation problem for a class of discrete-time

delayed neural networks with fractional uncertainties and sensor
saturations in [11]. The state estimation problem for a class of
discrete-time stochastic neural networks with random delays is
studied by employing a Lyapunov–Krasovskii functional in [12].
Related works can be found in [13–19].

In practice, one usually utilizes the dynamical systems with
Markovian jump to model a class of dynamical systems consisting
of a finite number of dynamical modes with random changes in
structure or parameters, such as manufacturing systems and com-
munication systems. Similarly, some neural networks have finite
discrete modes, and the switching law among these modes satisfies
Markovian property. In order to model such neural networks, the
neural networks with Markovian jump parameters are introduced.
There have been many works to investigate the state estimation
problem of this kind of neural networks. For example, Takagi–
Sugeno fuzzy model is used to investigate the state estimation of
uncertain Markovian jump Hopfield neural networks with mixed
interval time-varying delays in [20]. The authors investigated the
state estimation problem of Markovian jump Hopfield neural net-
works with discrete and distributed delays by avoiding the model
transformations and cross-terms bounding techniques in [21].

It is worth noting that most of the existing papers investigate
the asymptotic convergence of the estimation error, which means
that the states of estimated system converge to the states of the
system in the sense of the infinite horizon. From the viewpoint of
practical applications, it is more meaningful if we can make the
state estimation error converge to the origin in a finite time.
Moreover, there are many finite-time control methods, such as
finite-time stability [22–24] and finite-time control [25–27], to
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realize synchronization or stability in recent years. However, there
exist few works to consider the finite-time state estimation for
delayed neural networks.

Motivated by the above discussions, in this paper, we study the
finite-time state estimation for delayed Hopfield neural networks
with Markovian jump. By constructing a Lyapunov–Krasovskii
functional and employing inequality techniques, some conditions
that the estimator parameters need to satisfy are derived. The
contributions of our paper are as follows. (i) The finite-time state
estimation of delayed Hopfield neural networks with Markovian
jump is considered. (ii) The convergence time can be adjusted by
tuning the estimator parameters. (iii) The results are presented in
terms of the linear matrix inequalities.

The rest of this paper is organized as follows. In Section 2, the
delayed Hopfield neural networks and its estimator are introduced,
and some preliminaries are given. In Section 3, some conditions that
the estimator parameters should satisfy are derived. In Section 4,
a numerical example is provided to illustrate the effectiveness of the
proposed method. Finally, this paper is ended with conclusions in
Section 5.

In this paper, the following notations are used. Rn and Rn�m,
respectively, denote the n-dimensional Euclidean space and the set of
all n�m dimensional real matrices. For a vector v¼ ðv1; v2;…; vnÞT ,
jjvjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 v

2
i

q
denotes its norm, signðvÞ ¼ ðsignðv1Þ; signðv2Þ;

…; signðvnÞÞT , where signð�Þ is the sign function. AT denotes the
transpose of matrix A and “n” means the symmetric parts of the
main diagonal of a matrix. λmaxfAg and λminfAg denote the maximum
and minimum eigenvalue of matrix A, respectively. The notation
XZY (respectively, X4Y) means that X–Y is a symmetric semi-
definite matrix (respectively, positive definite matrix), where X, Y are
symmetric matrices. In is the n�n identity matrix. Throughout this
paper, all matrices are assumed to have appropriate dimensions.

2. Problem statements

Consider the following delayed Hopfield neural networks with
Markovian jump:

_xðtÞ ¼ �AðrtÞxðtÞþBðrtÞf ðxðtÞÞþBτðrtÞf ðxðt�τðtÞÞÞ;
yðtÞ ¼ CðrtÞxðtÞ;
xðtÞ ¼ϕðtÞ; tA ½�τ;0�;

8><
>: ð1Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT is the state vector associated
with n neurons. rt is a continuous-time Markov process with
taking values in a finite state set N ¼ f1;2;…; qg, and its transition
probability matrix M¼ ½mij�q�q is given by

PrfrtþΔ ¼ jjrt ¼ ig ¼
mijΔþoðΔÞ; ia j;

1þmiiΔþoðΔÞ; i¼ j;

(
ð2Þ

where

lim
Δ-0þ

oðΔÞ
Δ

¼ 0; ð3Þ

and mij40; ia j; i; jAN , is the transition rate from mode i at time t to
mode j at time tþΔ, which satisfiesmii ¼ �Pq

j ¼ 1;ja i mij. AðrtÞARn�n

is a diagonal matrix whose entries are positive constants. BðrtÞARn�n

and BτðrtÞARn�n are the connection weight matrices and the delayed
connection weight matrices which switch with the Markov process rt,
respectively. f ðxðtÞÞ ¼ ðf 1ðx1ðtÞÞ; f 2ðx2ðtÞÞ;…; f nðxnðtÞÞÞT represents a
continuous activation function and satisfies f ð0Þ ¼ 0. Time-varying
delay τðtÞ is a continuous differential function and satisfies 0rτðtÞoτ
and _τðtÞrνo1, where τ and ν are given positive constants. yðtÞARm

describes the measurement output of neural network (1), CðrtÞARm�n

is a known constant matrix. The initial condition ϕðtÞARn is a
continuous vector function.

In this paper, we intend to design the following full-order state
estimator of neural network (1):

_̂x ðtÞ ¼ �AðrtÞx̂ðtÞþBðrtÞf ðx̂ðtÞÞþBτðrtÞf ðx̂ðt�τðtÞÞÞþK1½yðtÞ� ŷðtÞ�
n

�μðPðrtÞÞ�1CT ðrtÞKT
2K2½yðtÞ� ŷðtÞ�

�κ2 � ðPðrtÞÞ�1CT ðrtÞ signfyðtÞ� ŷðtÞg‖yðtÞ� ŷðtÞ‖α; ŷðtÞ
¼ CðrtÞx̂ðtÞ; ð4Þ

where

μ¼
κ1½
R t
t�τðtÞ ðyðsÞ� ŷðsÞÞTKT

2QK2ðyðsÞ� ŷðsÞÞ ds�ðαþ1Þ=2

‖K2½yðtÞ� ŷðtÞ�‖2

when ‖yðtÞ� ŷðtÞ‖2a0, and μ¼0 as ‖yðtÞ� ŷðtÞ‖2 ¼ 0. K1ARn�m,
K2ARn�m, PðrtÞARn�n and QARn�n are unknown matrices to be
determined, 0oαo1, κ1 and κ2 are given positive constants.

Definition 1. System (4) is said to be the finite-time state estimator
of Hopfield neural network (1) if there exists a positive scalar T40
such that

lim
t-T � ðxðtÞ� x̂ðtÞÞ ¼ 0;

and xðtÞ � x̂ðtÞ for all tZT .

Let the state estimation error be eðtÞ ¼ xðtÞ� x̂ðtÞ and write AðrtÞ ¼
Ai, other matrices are similarly denoted as them, then one yields the
following error system:

_eðtÞ ¼ �AieðtÞþBigðeðtÞÞþBτigðeðt�τðtÞÞÞþK1CieðtÞ
�μP�1

i CT
i K

T
2K2½yðtÞ� ŷðtÞ�

�κ2 � P�1
i CT

i signfyðtÞ� ŷðtÞg‖yðtÞ� ŷðtÞ‖α; ð5Þ
where gðeðtÞÞ ¼ f ðxðtÞÞ� f ðx̂ðtÞÞ and gðeðt�τðtÞÞÞ ¼ f ðxðt�τðtÞÞÞ� f ðx̂ð
t�τðtÞÞÞ.

Remark 1. There exist a great deal of works such as [9–21] to
study the state estimation problem for various kind of neural
networks, but the results on finite-time state estimation are few.
On the other hand, it is obvious that the state of estimator (4)
follows with the state of neural network (1) in finite time only if
error system (5) converges to the origin in finite time.

In what follows, we will study how to choose suitable para-
meters in (4) such that system (5) is stable in finite time for the
nonlinear activation function f ð�Þ and time delay. In order to
achieve this goal, we firstly give the following assumption and
lemmas.

Assumption 1. Assume that there exist two known real matrices
U1ARn�n and U2ARn�n such that the nonlinear activation function
f ð�Þ satisfies
½f ðς1ðtÞÞ� f ðς2ðtÞÞ�U1ðς1ðtÞ�ς2ðtÞÞ�T ½f ðς1ðtÞÞ� f ðς2ðtÞÞ�U2ðς1ðtÞ

�ς2ðtÞÞ�r0

for any ς1ðtÞ; ς2ðtÞARn.

From Assumption 1, it yields that

ðeT ðtÞ; gT ðeðtÞÞÞΘðeT ðtÞ; gT ðeðtÞÞÞT r0; ð6Þ
where

Θ¼
UT

1U2 þUT
2U1

2 �UT
1 þUT

2
2

n In

" #
:

It should be noticed that this assumption is more general than the
commonly used Lipschitz conditions (see [11,21]).

Remark 2. Since error system (5) is discontinuous, we assume
that it has an equilibrium point in the origin in the sense of
Filippov [28].
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