
An error-tolerant approximate matching algorithm for labeled
combinatorial maps

Tao Wang a,b,n, Hua Yang c, Congyan Lang a,b, Songhe Feng a,b

a School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
b Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China
c Institute of Information Engineering, Kaifeng University, Kaifeng 475000, China

a r t i c l e i n f o

Article history:
Received 26 March 2014
Received in revised form
15 November 2014
Accepted 21 December 2014
Communicated by X. Li
Available online 7 January 2015

Keywords:
Combinatorial map
Similarity measure
Pattern recognition
Graph

a b s t r a c t

Combinatorial maps are widely used in image representation and processing, and measuring distance or
similarity between combinatorial maps is therefore an important issue in this field. The existed distance
measures between combinatorial maps based on the largest common submap and the edit distance have
high computational complexity, and are hard to be applied in real applications. This paper addresses the
problem of inexact matching between labeled combinatorial maps, and aims to find a rapid algorithm for
measuring distance between maps. We first define joint-tree of combinatorial maps and prove that it can
be used to decide of isomorphism between combinatorial maps. Subsequently, a distance measure based
on joint-trees and an approximate approach are proposed to compute the distance between combina-
torial maps. Experimental results show that the proposed approach performs better in practice than the
previous approach based on approximate map edit distance.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image representation, segmentation and retrieval are import
issues in the field of computer vision. Traditionally, in many image
processing applications [1–3], Region Adjacency Graphs (RAGs)
use vertices to describe the maximal homogeneous sets of con-
nected pixels and edges to describe the adjacency relationships.
Compared with traditional graph model, combinatorial maps are
more powerful structures for modeling topological structures with
subdivided objects. The concept was first introduced informally for
modeling planar graphs [4,5], and was later extended to represent
higher-dimensional subdivided objects [6,7]. Compared with tra-
ditional graph-based representations, combinatorial maps have
some natural advantages. First, combinatorial maps are more
precise for explicitly encoding the orientations of edges around
vertices. Second, it is easy to descript high-dimensional patterns
using combinatorial maps. In literatures combinatorial maps have
been utilized in 2D and 3D image representation and processing
[8–14]. And many practical problems in these fields can be
formulated as the combinatorial map matching problem.

Matching combinatorial maps is therefore an important pro-
blem in the field of image analysis and processing. There have
been some previous works on the map matching problem. The
early research can be traced back to Cori who discussed the
computation of the automorphism group of a topological graph
embedding in his report [15]. Liu defined sequence descriptions
for combinatorial maps [16], which are subsequently used for map
isomorphism and map automorphism [17]. Gossenlin et al. pro-
posed two map signatures which are used to efficiently search for
a map in a database [18]. Damiand et al. proposed a polynomial
algorithm for searching compact submap in planar maps [19], and
then extended this work to n-dimensional open combinatorial
maps [20]. Wang et al. proposed a quadratic algorithm for submap
isomorphism based on sequence searching [21].

All these works described above are only for the exact map
matching problem, which aim for finding an exact one-to-one
mapping between two combinatorial maps. In real applications,
two objects having small structural differences are usually con-
sidered as matched. Also, real world objects are usually affected by
noises so that map representations extracted from identical
objects at different time are rarely exactly equal. Therefore, it is
necessary to integrate some degree of error-tolerance into the map
matching process. Combier et al. defined the first error-tolerant
distance measure for comparing generalized maps by means of the
size of a largest common submap [22], and then related maximum
common submaps with the map edit distance by introducing
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special edit cost functions [23]. This approach cannot be directly
used for comparing labels on the maps, while in most scenarios
maps extracted from real world objects are always labeled. Wang
et al. defined edit distance of combinatorial maps and proposed an
optimal algorithm to compute map edit distance based on tree
search [24]. This approach is more flexible in terms of the ability of
comparing labels on maps. However, this measure also has
exponential computational complexity in the worst case and is
difficult to be applied directly in real applications. An alternative
way is to find approximate optimization methods at the cost of
acceptable sub-optimal solutions, e.g. Wang at al. also proposed an
approximate algorithm to compute map edit distance based on
Greedy strategy [24].

In this paper, we address the problem of measuring distance
between two combinatorial maps, which is one of the most
important and fundamental issues of the inexact map matching
problem. In particular, we aim to efficiently solve the labeled map
matching problem via relaxing the problem to tree matching. We
first define Joint-tree of combinatorial maps and propose an
efficient algorithm for construction of joint-trees. Furthermore,
we prove that joint-trees can be used to decide of map isomorph-
ism, and subsequently propose a distance measure between
combinatorial maps by means of edit distance between joint-
trees. By this way, the problem of combinatorial map matching is
relaxed to the problem of ordered tree matching, which can be
solved by a simple dynamic programming algorithm. As shown in
Experiments (Section 5), compared with the previous approach
based on approximate map edit distance, the proposed approach is
not only more computationally efficient but also provides more
accurate results.

2. Background

In this section, we first recall some basic notions of combina-
torial maps, and then introduce briefly the map edit distance
defined by Wang et al. [24]. Concepts and terminologies not
mentioned here can be found in Refs. [6,7,24].

2.1. Recalls on combinatorial maps

A 2D combinatorial map may be understood as a graph
explicitly encoding the orientation of edges around a given vertex.
The basic element in combinatorial maps is called dart, and each
edges is composed of two darts with different direction. The fact
that two darts stem from the same edge is recorded in the invo-
lution α. A permutation σ defines the rotation of darts around a
vertex. Each cycle of σ is associated to one vertex and encodes the
orientation of darts encountered when turning counterclockwise
around this vertex (e.g. the σ-cycle (3, 4, �1) in Fig. 1).

Definition 1. (2D labeled combinatorial map). A 2D labeled
combinatorial map G is a 4-tuple G¼(D, α, σ, μ) where

� D is a finite set of darts,
� α is the involution on D,
� σ is the permutation on D,
� and μ is a dart label function.

Fig. 1 demonstrates the derivation of a combinatorial map from
a plane graph, where D¼{1,–1, 2, �2, 3, �3, 4, �4, 5, �5, 6, �6},
α¼(1, �1)(2, �2)(3, �3)(4, �4)(5, �5)(6, �6)(7, �7) and σ¼
(1, 2)(3, 4, �1)(5, �4)(7, �2)(6, �3, �7)(�5, �6). Usually, μ is a
partial function mapping darts to a finite set of integers, characters
or vectors. A labeled map G¼(D, α, σ, μ) is connected if for any two
darts x and y in D, y can be reached from x by successive appli-

cations of the involution α and the permutation σ. For the sake of
simplicity, maps in this paper are connected and vertices are un-
labeled unless otherwise stated.

Compared with graph isomorphism problem, checking iso-
morphism of maps needs to integrate additional constraints on
preserving topological relationships between edges. By consider-
ing this, the map isomorphism problem becomes simple.

Definition 2. (map isomorphism). Given two labeled maps
G1¼(D1, α1, σ1, μ1) and G2 ¼(D2, α2, σ2, μ2), if there is a one-to-
one mapping ψ:D1-D2 such that for any xAD1, there are

ψ α1 xð Þð Þ ¼ α2 ψ xð Þ� �
; ψ σ1 xð Þð Þ ¼ σ2 ψ xð Þ� �

; μ1 xð Þ ¼ μ2 ψ xð Þ� �

then G1 and G2 are considered isomorphic.
Combinatorial maps explicitly encode the information of the

orientation of darts around vertices. This information enables us to
differentiate between configurations in the graph matching pro-
blem, and it is not encoded by region adjacency graphs. Moreover,
combinatorial maps may be defined in any dimensions. Indeed,
the 3D image representation and processing based on combina-
torial maps is an active research field [12–14].

The following notations may be used in the rest of this paper.
Given a map G, let E(G) and V(G) denote the edge set and the
vertex set of G, respectively. Given a dart x, let t(x) and h(x) denote
the tail vertex and head vertex of x, respectively, and let e(x)
denote the corresponding edge of x.

2.2. Map edit distance

Edit distance is one of the most flexible methods for error-tolerant
matching of structures. It was initially introduced for string-to-string
comparison [25], and was later extended to compare trees [26–28],
graphs [29–31] and combinatorial maps [24].

A standard set of edit operations includes insertion, deletion
and substitution of both darts and vertices. Denote the substitu-
tion of two darts x and y by (x-y), the deletion of dart x by (x-Λ),
and the insertion of dart y by (Λ-y). Edit operations on vertices
are implied by edit operations on their darts, i.e. whether a vertex
is substituted, deleted, or inserted, depends on the edit operations
of its darts. Given a source map G1 and a target map G2, a sequence
of edit operations S¼s1, …, sk that transforms G1 completely into
G2 is called an edit path between G1 and G2. Let γ be a distance
metric that assigns a nonnegative real number γ(x-y) to each edit
operation (x-y), where x and y may be darts or vertices. Note that
γ is defined on the whole set of operations and is not specific to
two given maps. Extend γ to the edit path S by

γðSÞ ¼
Xk

i ¼ 1

γðsiÞ;

and to the combinatorial map G¼(D, α, σ, μ) by

γðGÞ ¼
X

xAD

γðx-ΛÞ:

Definition 3. (map edit distance). Let G1 be the source map and G2

be the target map. The map edit distance between G1 and G2 is
defined by

d G1;G2ð Þ ¼ min γ Sð ÞjS is an edit path between G1 and G2
� �

:

Given two maps G1¼(D1, α1, σ1, μ1) and G2¼(D2, α2, σ2, μ2),
and a triple (M, G1, G2) where M is a set of pairs of darts (x, y)
(xAD1 and yAD2), we say that x and y are touched by a line in M if
(x, y) AM, and that x1 follows x2 (x1AD1 and x2AD1) in M if
x1¼σ1k(x2) (k40) and none of the darts σ1(x2), σ12(x2), …, σ1k�1(x2)
is touched by any line in M.
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