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The classical linear discriminant analysis has been recently extended to the multi-label dimensionality
reduction. However, Multi-label Linear Discriminant Analysis (MLDA) involves dense matrices eigen-
decomposition that is known to be computationally expensive for the large-scale problems. In this paper,
we present that the formulation of MLDA can be equivalently casted as a new least-squares framework
so as to significantly mitigate the computational overhead and scale to the data collections with higher
dimension. Further, it is also found that appealing regularization techniques can be incorporated into the
least-squares model to boost generalization accuracy. Experimental results on several popular multi-
label benchmarks not only verify the established equivalence relationship, but also corroborate the
effectiveness and efficiency of our proposed algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-label learning, handling data associated with multiple labels,
has naturally gained considerable attention in many potential appli-
cations such as multi-topic document categorization [45,23], protein
function prediction [2,29] and automatic image annotation [1,24].
More recently, a wide range of approaches have been developed for
multi-label learning. According to [43], existing algorithms can be
roughly divided into two categories: algorithm adaption and problem
transformation. Algorithm adaption approaches attempt to adapt
existing single-label classification algorithms to address the multi-
label issue. Some notable examples include neural network [55], lazy
learning [48,56,32], Adaboost MR [31,9] and rank SVM [11]. On the
other hand, the multi-label classification problem can be transformed
into several single-label classification problems so that existing
single-label learning schemes can be easily utilized. Specifically,
binary relevance method [43], pair-wise [13,51] and label embed-
ding methods [18,39,28] fall into this transformation category.

However, multi-label learning frequently involves high-dimensional
data which could make multi-label classification infeasible due to the
curse of dimensionality. Therefore, dimension reduction (DR) becomes
a necessary preprocessing step in the subsequent clustering or class-
ification task. The state-of-the-art DR approaches include unsupervised
methods such as PCA [19], ISOMAP [40], LLE [30], Laplacian Eigenmap
[3], LPP [25], together with many supervised methods, i.e. linear
discriminant analysis (LDA) [10,12], canonical correlation analysis
(CCA) [14] to name a few. Additionally, it has been shown that LDA
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bears strong connections with least-squares problem [10] for binary
classification. Many researchers have established a similar relationship
between the least-squares and LDA in multi-class classification
[15,53,7,42].

In essence, one main drawback of some existing DR algorithms
is that they are designed for single-label multi-class classification,
which means that they cannot be directly employed in multi-label
learning. To deal with this problem, the classical LDA has been
extended to handle multi-label DR [27] without taking into
account label correlations. Wang et al. [46] develop a new multi-
label linear discriminant analysis (MLDA) by defining class-wise
scatter matrices in the conventional LDA. Though MLDA has been
applied successfully in image annotation [46], it requires expen-
sively computing the Moore-Penrose pseudo-inverse of the class-
wise within-class scatter matrix to overcome the issue of singu-
larity. Hence, an efficient implementation of MLDA awaits further
consideration.

Inspired by the recent least-squares studies on the CCA [36] and
spectral regression discriminant analysis (SRDA) [7], we establish
that MLDA can be formulated as a least-squares formulation. On the
basis of the equivalence relationship, the projection functions of
MLDA can be gained by solving a set of linear equations and avoiding
the costly computation of large size eigen-decomposition. In parti-
cular, the least-squares problem can be efficiently tackled by means
of the conjugate gradient algorithms like LSQR [26], resulting in the
superior performance in terms of large-scale data corpora. In
summary, the primary contributions of this work are the following:

® The MLDA [46] is well analyzed, showing that MLDA is of time
complexity O(mnt +t3), where m is the number of features, n is
the number of samples and t = min(m,n). When m and n are
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large, such as high-dimensional text datasets, it is infeasible to
directly apply MLDA [46] to learn the projection matrix.

® We extend the multi-label LDA (MLDA) to its least-squares
formulation (LSMLDA). Consequently, the iterative conjugate
gradient algorithm can be employed to efficiently handle the
least-squares problem with large size in order to considerably
reduce the computational cost.

® Besides, with least-squares as a building block, a group of
attractive regularization techniques can be easily integrated
with LSMLDA to control the complexity of a learning model and
substantially improve the generalization performance.

The remainder of this paper is organized as below: Section 2
briefly reviews the related work. In Section 3, we give a brief review
of MLDA and least squares. In Section 4, a detailed computational
analysis of MLDA is rigorously presented. Section 5 introduces our
least-squares MLDA (LSMLDA). Extensive experiments obtained by
several noted image, biology, text data corpora are reported in
Section 6, followed with conclusions in Section 7.

2. Related work

Many multi-label classification learning algorithms use dimen-
sion reduction as a preprocessing step. In this section, we discuss
some closely related multi-label dimension reduction algorithms.

Multi-label informed latent semantic indexing (MLSI) was pro-
posed in [54] for multi-label dimension reduction. MLSI employs the
label information to guide the learning of the transformation and has
been applied successfully in multi-label text classification. Canonical
correlation analysis (CCA) [36] projects two sets of variables onto a
lower-dimensional subspace in which they are maximally correlated.
For multi-label problems, one variable represents the data sample and
the other variable is derived from the label set. Similar to CCA, multi-
label dimensionality reduction via dependence maximization (MDDM)
[58] attempts to find a lower-dimensional subspace in which the
dependence between the input features and the associated class labels
is maximized. Unlike CCA, partial least squares (PLS) [49] maximizes
the covariance of the two sets of variables in the transformed space.
An equivalent relationship between CCA and PLS has been established
in [38]. However, the above-mentioned algorithms cannot capture
high order correlation information among different labels. As a result,
a least squares formulation of hypergraph spectral learning has been
proposed in [35] to capture the correlation information contained in
different labels. To further incorporate the data and label correlation, a
hypergraph canonical correlation analysis for multi-label classification
has been presented in [47] recently. Ref. [21] presents a novel multi-
label dimensionality reduction using the variable pairwise constraints.
Multi-label dimensionality reduction has also been studied in the
context of semi-supervised learning [20]. A more comprehensive
review of multi-label dimensionality reduction as well as multi-label
learning algorithms can be found in [37,57].

3. Brief review of MLDA least squares

We present a brief review of MLDA [46] and least squares in
this section. Some important notations have been first described in
Table 1.

3.1. MLDA

Given a dataset with n samples {x;,y;}{_; and c classes, where
x;e R™ and y; € {0,1)°. y;(j)=1 if x; belongs to the j-th class and
0 otherwise. For convenience, we write X =[x1,X,...,X,] € R™"
and  Y={1.Ys. ... V) =) Yy Yol € RS With  these

Table 1
Notations.
Notations Descriptions
n The number of training samples
m The dimension of data point
c The number of labels
Xi The i-th data point
Sp The class-wise between-class scatter matrix
Sw The class-wise within-class scatter matrix
Se The class-wise total scatter matrix
X The data matrix
Y The indicator matrix
X The centered data matrix
a The transformation vector
A The transformation matrix

notations, the between-class scatter matrix, within-class scatter
matrix and total scatter matrix for MLDA are defined as follows
[46]:

C n
Sp=>_ S, sP= D Vil — (g — )"
k=1

i=1

c n
Sw=>_ SW, s = > Vi — )X — )"
k=1 i=1
[

n
Se= >8P, SP=>" Yai—wxi—p"
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where y; is the mean of the k-th class and y is the multi-label
global mean, which are defined as follows:
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Similar to classical LDA, the objective function of MLDA is
defined as follows:

a’Sya
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a* = max
a

Notice that S; =S, +Sy, the optimization problem (1) is equivalent
to

T
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When K projective functions A=|[ay,a,,...,ax] are needed, the
objective function of MLDA can be rewritten as

T
2 — aTA SA)

2
A tr(ATS,A) 5

where tr(-) denotes the trace operator of a matrix. The optimiza-
tion problem (2) is equivalent to finding all the eigenvectors that
satisfy S,a=AS;a, where 1 # 0. The solution can be obtained by
utilizing an eigen-decomposition on the matrix St’]Sb. if S; is
nonsingular. When S; is singular, a stable way to solve this eigen-
problem is first to compute the pseudo-inverse of S;, then solve the
eigen-decomposition SISbaz/la. One main shortcoming of this
approach is the expensive computation of pseudo-inverse, espe-
cially for high-dimensional datasets.

3.2. Least squares

Least squares is one of the most popular techniques for both
regression and classification. Given a training dataset X =[xq,X3,
wuXnl, Y=[1,Y2,....¥n], Where x;eR™ is the observation and
y; € R¢ is the corresponding response. Suppose that both X and Y
are centered, i.e.,, Xe=0, Ye =0, where e is a all-ones vector with
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