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a b s t r a c t

Position tracking control for the chaotic permanent magnet synchronous motor drive system is
addressed in this paper. Neural networks are used to approximate the nonlinearities and indirect
adaptive backstepping technique is employed to construct controllers. The designed indirect adaptive
neural controllers can suppress chaos in the permanent magnet synchronous motor and guarantee that
the position tracking error converges to a small neighborhood of the origin. Compared with the classical
backstepping method, the proposed neural controllers' structure is very simple. Simulation results
illustrate its effectiveness.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Permanent magnet synchronous motors (PMSMs) are inten-
sively used in industrial applications because of their high effi-
ciency, high speed, large torque to inertia ratio and high power
density [1]. However, it is still a challenging problem to control the
PMSMs to get high performance and stable operation because
their dynamic models are usually multivariable, coupled, highly
nonlinear and even emerging chaotic attractors and limit cycles
with systemic parameters dropping into a certain area. The bifu-
rcations and chaos in a PMSM was first presented by Li et al. in [2].
The chaotic behavior in PMSM is undesirable because it can break
the stability of the driver and even make the controlled system
collapse. In order to achieve high performance of PMSMs, many
researchers have aimed to develop nonlinear control methods for
the PMSMs, various algorithms have been proposed and references
therein [3–8].

Backstepping-based [9–13] nonlinear adaptive control method
has been paid considerable attention to control the nonlinear syst-
ems where the uncertainties do not satisfy matching conditions.
The classical backstepping is successfully applied to the control of
PMSM drivers recently by Ge and Harb [3,8]. But a major problem
with backstepping approaches is called “explosion of complexity”
caused by the repeated differentiations of virtual input [14,15].

Theoretically, the calculation of virtual control signal derivatives is
simple, but it can be quite tedious and complicated in practice
applications when n is greater than three because the real control
signal u will include the derivative of αn, which requires the
second derivative of αn�1, which requires the third derivative of
αn�2, and so on. For instance, the classical backstepping controller
proposed in [16] to control PMSMs is overly cumbersome, which is
the representative problem of “explosion of complexity”.

Neural network (NN) approximation method has attracted con-
siderable attention during the past decades because of its inherent
capability for modelling and controlling highly uncertain, complex
and nonlinear systems [17–19]. A new robust backstepping speed
controller for induction motors using NNs was presented by Kwan
and Lewis [14], where a two-layer NN was utilized to construct the
fictitious controller, and a second NN was used to realize the fict-
itious NN signals. The radial basis function (RBF) NN is considered as
a two-layer network, which contains the output layer and the
hidden layer [20,21]. The neural networks can be utilized to deal
with uncertain information, and can be applied to control ill-defined
and complex systems. It has been one of the classical tools in
function approximation and an efficient method to design control
system in the area of engineering applications [22].

Motivated by the earlier works [23,24], an approximation-
based indirect adaptive neural control approach is proposed for
suppressing chaos in PMSM drive systems. Unlike the direct
adaptive results in [23], the RBF neural networks are utilized to
approximate the unknown nonlinearities rather than the desired
control input signals. Compared with the existent results of neural
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control method for PMSM drive system, the main contributions of
this paper are that (i) the proposed approximation-based neural
controller has a simpler structure and the problem of “explosion of
complexity” is overcome; (ii) the number of adaptive parameters
is considerably reduced to only one which is independent of the
number of system state variables and the neural basis function. As
a result, the computational burden of the scheme is alleviated, it
will make the designed scheme more suitable for practical appli-
cations by reducing the on-line computational burden of the sys-
tem. Simulation results show the effectiveness and the robustness
against the parameter variation in chaotic PMSM drive system.

2. Mathematical model of chaotic PMSM drive system

The dimensionless mathematical model of PMSM drive system
with the smooth air gap is shown as follows [2]:

dΘ
dt

¼ω;

dω
dt

¼ σðiq�ωÞ;
diq
dt

¼ � iq� idωþγωþuq;

did
dt

¼ � idþ iqωþud ð1Þ

where Θ, id, iq and ω are state variables of PMSM drive system,
which denote the rotor position, the d�q axis currents and angle
speed, respectively. γ and σ are system operating parameters,
which are unknown positive. ud and uq stand for the d�q axis
voltages.

Li et al. found that the PMSM was experiencing chaotic beha-
vior when the system parameters σ and γ fall into a certain area
[2] and the external inputs were set to zero. For instance, the
PMSM drive system begins to display chaos with σ ¼ 5:46 and
γ ¼ 14:93, which is shown in Fig. 1. In order to suppress chaos of
PMSM drive system, an indirect adaptive neural control appro-
ach is proposed via backstepping in this paper. For simplicity, the
following notations are introduced: x1 ¼Θ; x2 ¼ω; x3 ¼ iq; x4 ¼ id.
Thus the dynamic model of PMSM drive system can be redescribed
as follows:

_x1 ¼ x2;
_x2 ¼ σðx3�x2Þ;
_x3 ¼ �x3�x2x4þγx2þuq;

_x4 ¼ �x4þx2x3þud: ð2Þ

3. Indirect adaptive neural controller design and stability
analysis

This section is devoted to provide an indirect adaptive NN control
approach to suppress chaos in PMSM drive system via backstepping.

Step 1: For the reference signal xd, define the tracking error var-
iable as z1 ¼ x1�xd. From the first differential equation of (2), the
error dynamic system is given by _z1 ¼ x2� _xd.

Choose Lyapunov function candidate as V1 ¼ 1
2z

2
1; then the time

derivative of V1 is computed by

_V 1 ¼ z1 _z1 ¼ z1ðx2� _xdÞ: ð3Þ
Construct the virtual control law α1 as

α1ðx1; xd; _xdÞ ¼ �k1z1þ _xd ð4Þ
with k140 being a design parameter and z2 ¼ x2�α1: By using (4),
(3) can be rewritten of the following form:

_V 1 ¼ �k1z21þz1z2:

Step 2: Differentiating z2 gives

_z2 ¼ _x2� _α1 ¼ σðx3�x2Þ� _α1: ð5Þ
Now, choose the Lyapunov function candidate as V2 ¼ V1þ1

2z
2
2.

Obviously, the time derivative of V2 is given by

_V 2 ¼ _V 1þz2 _z2
¼ �k1z21þz2ðz1þσðx3�x2Þ� _α1Þ
¼ �k1z21þðσz2x3þz2f 2Þ ð6Þ

where f 2ðZ2Þ ¼ �σx2þz1� _α1, Z2 ¼ ½x1; x2; xd; _xd; €xd�T . Noting that
f2 contains the nonlinear term _α1 and the unknown parameter σ,
this will make the conventional backstepping design difficult.
Herein we will employ the neural networks to approximate the
nonlinear function f2 in order to avoid this trouble.

According to the RBF neural network approximation property
proven in [25], for given ε240; there exists RBF neural network
ϕT

2P2ðZ2Þ such that

f 2ðZ2Þ ¼ϕT
2S2ðZ2Þþδ2ðZ2Þ; ð7Þ

where δ2ðZ2Þ is the approximation error and satisfies jδ2 jrε2.
Consequently, a simple method computing produces the following
inequality:

z2f 2 ¼ z2 ϕT
2S2þδ2

� �
r 1

2l22
z22 Jϕ2 J

2ST2S2

þ1
2
l22þ

1
2
z22þ

1
2
ε22 ð8Þ

where l2 is a positive constant.
Thus, it follows immediately from substituting (8) into (6) that

_V 2r�k1z21þ
1

2l22
z22 Jϕ2 J

2ST2S2þ
1
2
l22þ

1
2
z22þ

1
2
ε22þσz2x3: ð9Þ

The virtual control α2 is constructed as

α2ðx1; x2; xd; _xd; €xdÞ ¼
1
σ

�k2z2�
1

2l22
z2θ̂S

T
2S2

 !
ð10Þ

where θ̂ is the estimation of the unknown constant θ which will
be specified later. Adding and subtracting α2 in (9) show that

_V 2r�k1z21þ
1

2l22
z22 Jϕ2 J

2ST2S2þ
1
2
l22þ

1
2
z22

þ1
2
ε22þσz2

1
σ

�k2z2�
1

2l22
z2θ̂S

T
2S2

 !
þz3

 !

r�k1z21þ
1

2l22
z22 Jϕ2 J

2ST2S2þ
1
2
l22þ

1
2
z22þ

1
2
ε22

�k2z22�
1

2l22
z22θ̂S

T
2S2þσz2z3
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Fig. 1. Typical chaotic attractor in PMSM.
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