
Local iterative DLT soft-computing vs. interval-valued stereo
calibration and triangulation with uncertainty bounding
in 3D reconstruction

José Otero n, Luciano Sánchez
Computer Science Department, Oviedo University, 33204 Gijón, Spain

a r t i c l e i n f o

Article history:
Received 20 March 2014
Received in revised form
17 October 2014
Accepted 9 November 2014
Available online 9 May 2015

Keywords:
Computer vision
Stereo
Camera calibration
Interval-valued
Possibility

a b s t r a c t

The use of stereo vision for 3D data gathering is affected by constraints in the position of the cameras,
the quality of the optical elements and the numerical algorithms for calibration and matching. Also,
there is not a wide agreement on the best procedure for bounding the 3D errors within an uncertainty
volume. In this work, this problem is solved by implementing the whole set of computations, including
calibration and triangulation, with interval data. This is in contrast with previous works that rely on
Direct Linear Transform (DLT) as a camera model. To keep better with real lens aberrations, a local
iterative modification is proposed that provides an on-demand set of calibration parameters for each 3D
point, comprising those nearest in 3D space. In this way, the estimated camera parameters are closely
related with camera aberrations at the lens area through which that 3D point is imaged. To further
reduce the triangulation uncertainty volume, a Soft Computing approach is proposed that represents
each 3D point uncertainty as a cloud of crisp points compatible with interval-valued calibration data.

Real data from previous works in related research areas is used to judge whether the new approach
improves the precision and accuracy of other crisp and interval-valued estimations without degrading
precision, and it is concluded that the new technique is able to significantly improve the uncertainty
volumes.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a wide range of practical problems where a por-
table 3D data gathering system is needed. To name a few, there
are field measurements where the equipment must be carried to
site, or industrial measurements of objects whose position varies,
for instance vehicles in MOT tests [1]. The major obstacles to non-
laboratory 3D data gathering include cost, availability and the lack
of suitable instrumentation [2]. According to [3], only optical
scanners can recover curved surfaces, and these devices have a
high cost. Alternative devices for 3D data capture may involve
constraints on positioning of the necessary instruments that are
not suitable in the field.

Because of this, techniques from photogrammetry and compu-
ter vision are seldom applied to such a class of problems, with
a few exceptions. For example, in [4] stereo vision is used
to reconstruct three-dimensional biological forms. The authors
conclude that the precision of stereo vision methods improves
photogrammetry by a large margin. Moreover, they assert that the

lack of precision in some of their experiments was mainly related
to two causes: (a) a less precise camera calibration and (b) the
quality of the camera. To this it may be added that a rigorous
procedure for estimating the accuracy of stereo vision-based
measurements has still to be established.

The problems found by these authors are not exclusive to
bioinformatics. Generally speaking, computer Vision Systems deal
with measurement devices that, to a certain extent, are subjected
to different kinds of errors. There are many works in this area that
propose different models to understand how light refracts through
camera lenses. The simplest is a plain projective model called
pinhole [5]. The estimation of the parameters of this model or
“calibration” consists in capturing images of an object with several
landmarks at known positions. Let the image coordinates of a 3D
point be w¼ ðx; y; zÞ, and let the projection of this point at the
image be m¼ ðu; vÞ; if a model f with parameters p1…pn holds for
this data, then f ðw; ðp1…pnÞÞ ¼m. If the model parameters are
unknown at least n equations are needed, obtained from n
correspondences between 3D points and 2D points. The standard
procedure uses more than n point correspondences, in order
to partially cancel measurement errors, from which an over-
constrained system of equations is obtained.
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Real lenses depart from the ideal pinhole camera model and
thus, more elaborate models are needed in order to compute
where a 3D point is projected on an image when optical aberra-
tions are taken into account. Some good sources of information
about available general purpose models are books such as [6,7].
Classical models are Tsai [8], Zhang [9] and (with several addi-
tional parameters that account for different kinds of lens imper-
fections) Direct Linear Transform [10]. More recently, new models
have been developed, intended for lenses that are far apart from
ideal ones, like fisheye lenses [11–13]. Finally, some papers are
devoted to the so-called “generalized camera calibration” frame-
work [14,15,12].

When a Computer Vision System comprises several cameras,
each one calibrated using a suitable method, 3D point coordinates
can be obtained from at least two 2D projections, one from each
camera, as in stereo or trinocular systems [16]. This process is
known as resection or triangulation. In some sense, the model of
each camera must be inverted and the subset of 3D space that
projects on each 2D point must be identified. Of course, from the
geometry of the system, some additional constraints can be
obtained that help to solve the problem of matching points
between images (also called correspondence) [17], that is, finding
pairs of points (one from each camera) that are a 2D projection
from the same 3D point.

An important issue when dealing with a Computer Vision
System is the assessment of the accuracy of the measurements
provided. There are some sources of imprecision that lead to
measurements with unknown error bounds. This work proposes
an improvement of [18] that produces smaller uncertainty volume,
gives information about the orientation of that volume and is able
to handle real optics. Prior work and open problems are detailed in
Section 2. In Section 3 the proposed approach is shown. Some
numerical results are provided in Section 4 and in Section 5
conclusions and future work are mentioned.

2. Problem statement and related work

Digital cameras have several sources of error and uncertainty:

� Lens imperfections lead to image distortions, blurriness, chro-
matic aberration and other defects. Usually camera models
account for some of these issues, but others are intrinsic to
optics.

� Digital images are discrete by definition. Intensity values at
each pixel and color channel are also sampled, usually along an
evenly distributed grid in the x and y axes. It is commonly
assumed that the center of each pixel is the 2D projection of a
given 3D point, however, this is not entirely true.

� Camera sensor noise is noticed mostly when illumination
conditions are not optimal. Due to its stochastic nature, it is
not possible to fully remove noise from images.

There are several works in the literature that try to minimize the
impact of these sources of error in computer vision systems. In recent
years, a plethora of models that try to fit even the most extreme kinds
of optics (like fisheye lenses) have emerged [11–13]. A totally different
approach is to provide a generic framework for camera calibration
decoupled from the nature of the lenses like in [14,15,19,12]. The effect
of digital image quantization has been covered usually in connection
with stereo, in works such as [20–23] or (to a lesser extent) [1]. The
third source of error, image acquisition noise, has received some
attention from the Computer Vision community in works like [24]
or [25].

None of the previously mentioned works tackle the problem of
bounding the errors that propagate from all the reported sources to

the final goal of a Stereo Computer Vision System: the 3D position
estimation of a visible point in the scene. A few examples that try
to give some information about the tolerance of 3D measurements
with stereoscopic systems are [26,27]. To our knowledge [18] is the
only work where an interval-valued approach is proposed.
Our work is based on this approach and will be thoroughly
explained below.

2.1. Interval-valued estimation of the tolerance

In [18] both camera calibration and stereo triangulation (3D
coordinates recovery from at least two pairs of matched 2D
coordinates) are addressed as an interval-valued problem. The
authors propose the use of a pinhole model in Eq. (1), where
w¼ ðx; y; zÞT are 3D coordinates, m¼ ðu; vÞT 2D or image coordi-
nates and pi; i¼ 1…3 a 3� 4 full-rank matrix, as shown in Eq. (2)

u¼ pT1wþp1;4
pT3wþp3;4

v¼ pT2wþp2;4
pT3wþp3;4
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The values of this matrix are obtained using Eq. (3) where there
are 11 parameters ðp3;4 ¼ 1Þ. In this equation one pair ðui; viÞ (2D
coordinates) is related with a triplet wi ¼ ðx; y; zÞ (3D coordinates),
that is, for each 2D to 3D correspondence, two equations are
obtained. From this it follows that at least six 2D to 3D corre-
spondences are needed in order to obtain a overconstrained
system of equations. Usually more than six correspondences will
be used, in order to overcome measurement errors
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A stereoscopic system comprises two cameras, then the pre-
vious procedure, applied to both cameras, yields two different
parameter matrices, P and P0. If two 2D coordinates ðu1; v1Þ and
ðu2; v2Þ, one from each image, are known to be the projection of
the same (but with unknown coordinates) 3D point w, then
replacing the known 2D coordinates and camera parameters for
both images in Eq. (1) leads to the system of equations in (4) with
only three unknowns, the 3D coordinates w, related with the
known camera parameters and the 2D coordinates from both
images. This system can be solved using any suitable overcon-
strained system solution method

ðp11�up13ÞT

ðp12�vp13ÞT

ðp21�u2p23ÞT

ðp22�v2p23ÞT
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In the same work, the authors consider that 2D pixel coordi-
nates are discrete and thus that a rounding error of 70:5 pixels
may occur, that is, pixels are rectangles instead of crisp points. If
this is translated to Eq. (3), it is obvious that an interval-valued
system of linear equations is obtained and thus, P values will also
be intervals. The authors state that the numerical solution estima-
tion of interval-valued systems of equations using the approach in
[28] is the tightest interval-valued one for this problem. The
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