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In this paper, we consider a class of impulsive stochastic shunting inhibitory cellular neural networks
with delays. By using the fixed points principle and Gronwall-Bellman's inequality technique, we obtain
the existence and exponential stability of square-mean almost periodic solutions for this class of
networks. Finally, we give an example to illustrate the feasibility of our results.
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1. Introduction

In recent years, shunting inhibitory cellular neural networks
(SICNNs) have been extensively applied in psychophysics, speech,
perception, robotics, adaptive pattern recognition, vision, and image
processing. Hence, they have been the object of intensive analysis by
numerous authors. Many important results on dynamical behaviors of
SICNNs have been established and successfully applied to signal
processing, pattern recognition, associative memories, and so on. We
refer the reader to [1-9] and the references cited therein.

The time delay is a natural phenomenon that is commonly
encountered in various engineering systems containing chemical
processes, hydraulic and rolling mill systems due to the finite
switching speed of amplifiers in networks. Moreover, the delay is
frequently a source of instability and oscillation of system perfor-
mance. Therefore, it is important to investigate the stability of
delayed neural networks (see [10]).

On the other hand, the theory of impulsive differential equa-
tions is now being recognized to be not only richer than the
corresponding theory of differential equations without impulses,
but also represents a more natural framework for mathematical
modelling of many real-world phenomena, such as population
dynamical models and neural networks. Since many dynamical
processes are characterized by the fact that at certain moments of
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time, they undergo abrupt changes of state. With the development
of the theory of impulsive differential equations (see [11,12]),
various kinds of neural networks governed by impulsive differ-
ential equations have been proposed and studied extensively (see
[13-18]). For example, authors of [19] considered the impulsive
SICNNs neural networks with almost periodic coefficients:

WO _ o+ S COf GOm0+ L0, €,
dt Chi € Nr(iy) Y

Axyi(ty) = apXij(ti) + e (6)) + L, t=tx, ke N,

where i=1,2,...m, j=1,2,...n, Ax;(ty) =x(t;7)—x;(t;) are
impulses at moments ¢, and to <t <t <--- <t <--- is a strictly
increasing sequence such that lim;...t,= +oo. By using the
contraction principle and Gronwall-Bellman's inequality, they
obtained some sufficient conditions for the existence and expo-
nential stability of almost periodic solutions.

Besides, in real nervous systems, there are many stochastic
perturbations that affect the stability of neural networks. The results
in [20] suggested that one neural network could be stabilized or
destabilized by certain stochastic inputs. It implies that the stability
analysis of stochastic neural networks has primary significance in the
design and applications of neural networks. With respect to stochastic
neural networks, there are many works on the dynamics of different
classes of stochastic neural networks (see [21-32,38,33-35]). For
example, the stability of several classes of stochastic neural networks
was investigated in [25-33,38]; the existence and exponential stability
of periodic solutions for two classes of stochastic neural networks with
delays were established in [34,35], respectively.


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.04.089
http://dx.doi.org/10.1016/j.neucom.2015.04.089
http://dx.doi.org/10.1016/j.neucom.2015.04.089
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.089&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.089&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.089&domain=pdf
http://dx.doi.org/10.1016/j.neucom.2015.04.089

P. Wang et al. / Neurocomputing 167 (2015) 76-82 77

Moreover, it is well known that the almost periodicity is more
universal than the periodicity and the square-mean almost peri-
odicity is important in probability for investigating stochastic
processes [32,36-39]. Such a notion is also of interest for applica-
tions arising in mathematical physics and statistics. However, to
the best of our knowledge, there exists no result on the existence
and uniqueness of mean square almost periodic solutions for
impulsive stochastic shunting inhibitory cellular neural networks
with delays. Motivated by the above, we consider the following
impulsive stochastic SICNNs with delays:

dx(t) = *aij(f)xij(t)7C Z( )Csl(t)f(xm(f O (E)
ki € Nr(ij
- ZN: B"’(t) Joh = Jig (it — w)) dux(t)+Ly(t)| de
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4y Dkl(t)o—ij(t,xﬁ(t)) dwy(t), t+# ty,
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(1.1)

where i=1,2,...,m, j=1,2,...,n; C; denotes the cell at the (i})
position of the lattice, the r-neighborhood N.(i,j) is given as

Ny(i,j) = {Cy : max(|k—i|, |l—j])r, 1<k<m, 1<l<n},

Ng(i,j) and Ny(i,j) are similarly specified; x;; is the activity of the
cell G at time t; L;; is the external input to Cj at time t; a;(t) >0
represents the passive decay rate of the cell activity at time t;
Cf-;l >0, Bg»l >0 and Df-;l > 0 are the connection or coupling strength
of postsynaptic activity of the cell transmitted to the cell Cj; at time
t; the activity functions f,g represent the output or firing rate of
the cell Cy; 17;;(t) > O corresponds to the transmission delay at time
t; J;(-) is the kernel function determining the distributed delay at
the cell (ij); W(t) = (W11 (), Wi2(b), ..., Wmn(t))" is the m x n-dimen-
sional Brownian motion defined on a complete probability space;
o; is a Borel measurable function and ¢ = (6);,, is a diffusion
coefficient matrix, where i=1,2,...m, j=1,2,...,n; Ax;(ty) =
x;i(tF)—x;(t, ) are impulses at moments ¢, and fo<t; <
ty <. <tp<-- is astrictly increasing sequence such that
limtaootk = +00, Qjjk, Vijk € R.

Let (€2, F,{Ft}:=0,P) be a complete probability space with a
filtration {F;};- o satisfying the usual conditions (i.e., it is right
continuous, and Fy contains all P-null sets), and let E[.] be the
expectation operator with respect to the probability measure,
R"(R",) be the space of n-dimensional (nonnegative) real column
vectors and R™ be the space of m x n-dimensional real column
vectors. Set PC(R, R™) = {¢ : R—>R™, @ is continuous everywhere
except at the points t, {t;} € B at which ¢(t;}) and ¢(t;) exist,
where ¢(t;) = @(ty)}, where B = {{ty}| ty € R, ty <t q, im0ty =
+00}. For p> 0 and t >0, let PC%, (R, R™") denote the family of all
Fr—measurable PC(R, R™")—valued random variables ¢ such that
sup; . gEl@(t)|P < co. In this paper, we let p=2 and denote the norm

@lleo = sup c (Ell@®1})'?,  where () =maxg{ll@z®ll2),
li®Oll2 = ([oleg®1* ds)'/?, i=1.2,... .m,j=1,2,....n

For convenience, we denote
f=suplf), g= sup |g(t. )],

teR

(tx) e RxPC’jTr([R&,R'"")

where f{t) is a square-mean almost periodic function and g(t, x) is a
square-mean uniformly almost periodic function in the sense
of Bohr.

Throughout this paper, we assume that

(H1) ay(t), n(0), CK(0), B (1), DX (1), Li(t) are all square-mean almost
periodic functlons and there exists a positive constant A such
that a(t)>4,i=1,2,...,m,j=1,2,....n

(H,) The activation functions f, g are square-mean almost periodic
and there exist positive numbers M, N such that
Ellf () f(y)ll2 <MElx—yl?%  Elgx) —gWII* < MgE|lx—yl|%,
x,y e PC? 7 (R, R).

(Hs3) oy is uniformly square-mean almost periodic and there exists
positive numbers R; such that Elloy(t,x)—oy(t, ¥l <
RiElx—yI?, x,y € PC3 (R, R), i=1,2,...m, j=1,2,..,n

(Ha) {aji}, {vy) are almost periodic sequences and —1 < a <0,
Hjj = supy . ;| Vi | ; Ty are square-mean almost periodic uni-
formly with respect to x; satisfying E||T(x)—TiW)II? <
RiElIx—yl%,  x, yePCzﬂ(R R), Qj=supi.,ITul, keN,
i=1,2,...mj=1,2,.

(Hs) The set of sequences {t } tk = tiyj—t k.je N are uniformly
almost periodic and 1nf,< th=£E>0.

Let ty € R. Denote by PC (to) the space of all 7, —measurable
functions ¢ : [to—7, to]—>Qe R™™ with respect to a sequence

{6 }SE N C (tO 7, tO)Tr where 7 = maxmax(u){supte T ‘ ﬂu(f)l }
Let ¢ be an element of pC? iy (to). Denote by

X(t) = X(t: to, o) = (X11(£), X12(0), ... Xmn(D),
the solution of system (1.1) satisfying the initial condition:

X(t; to, @g) = @o(0),
X(tg s to, @o) = @o(to).

te(to—7.to)y,

(1.2)

Our main purpose of this paper is to study the existence and
exponential stability of square-mean almost periodic solutions to
(1.1) by means of the fixed points principle and Gronwall-Bell-
man's inequality technique.

2. Preliminaries

In this section, we shall recall some basic definitions, lemmas
which are used in what follows.

Definition 2.1 (Lakshmikantham et al. [11]). The set of sequences
{T‘} r’ =7;,j—7T;, 1,j€ N is said to be uniformly almost periodic if
for any € > 0 there exists a relatively dense set in R of g-almost
periods common for all of the sequences.

Definition 2.2 (Lakshmikantham et al. [11]). The piecewise con-
tinuous function ¢ e PC(R,R) is said to be square-mean almost
periodic, if the following hold:

(i) the set of sequences {z"} 1"_T,+j—r,. i,jeN is uniformly
almost periodic;

(ii) for any & > 0, there is a positive number 6 = d(¢) such that if
the points t’ and t" belong to the same interval of continuity
and |t'—t"| <8, then E|lp(t))—pt)|* <&;

(iii) for any € > 0, there is relative dense set /" such that if eI,
then E||@(t')— @(t")||*> < € for all t e R which satisfy the condi-
tion |t—7;| > ¢, ieZ.

Lemma 2.1 (Lakshmikantham et al. [11]). Let the set of sequences
{7}}, ¥l =7, j—7; i,je N is uniformly almost periodic. Then for each
[ > 0 there exists a positive integer N such that on each interval of a
length I, there exist no more than N elements of the sequence {z;} and

i(s,t) <N(t—s)+N,
where i(s, t) is the number of points t; in the interval (s, t).
In order to study system (1.1), we consider the linear system
= —a;i(Ox(t), t#Ly,

xu(t)_
AXU(tk)=aiijij(tk)a t=ty, keN, i=1,2,...,m, j=l,2,...,n.
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