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a b s t r a c t

There are a large number of unlabeled examples in real-world application, and if the labels of these
unlabeled examples are given manually, then the cost will be very high. The problem about how to label
these massive unlabeled instances with the minimal cost is paid more and more attention. Active
learning efficiently solves this bottleneck by selecting the most informative examples from the unlabeled
examples and establishing a classifier with a higher classifier accuracy to label unlabeled examples,
which greatly improves work efficiency. In this paper, we compare two kinds of traditional active
learning algorithms relying on a single classifier, namely Gaussian process and margin sampling active
learning, in two aspects of classification error rates and computing time. Moreover, we compare their
improved versions (GPMAL and IMS) which apply the manifold-preserving graph reduction (MPGR)
algorithm. MPGR constructs a subset which well exploits the structural spatial connectivity and spatial
diversity among examples. By using MPGR, an active learner selects the informative and representative
candidates from the subset instead of the whole unlabeled data set. In addition, a comparison with a
state-of-the-art active learning method, QUIRE, is provided. Experimental results on multiple data sets
show that both GPMAL and IMS have their own advantages.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

For any supervised classifier to performwell, it not only needs to be
trained on sufficient labeled examples but also requires the quality of
the labeled data to be high. Therefore, the training set should be
carefully selected to lead the classifier to obtain good performance.
This constraint makes collecting training data a potentially important
process. However, in many sophisticated supervised learning pro-
blems, a large number of unlabeled examples can be obtained easily,
but labeling them are generally costly and time-consuming. In order to
reduce the difficulties as much as possible, it is imperative for
procedures to find an appropriate training set which really helps us
to improve the performance of the classifier automatically, or semi-
automatically.

In the machine learning area, this problem is known as active
learning, which has been the subject of significant theoretical and
experimental studies in machine learning [18]. As stated in [18], there
are mainly three scenarios where the learner may be able to ask
queries, which are respectively membership query synthesis, stream-
based selective sampling and pool-based sampling. In this paper, we
focus on the pool-based active learning, which selects an unlabeled
example from a given pool for manual labeling. Starting with a small

training set, active learning can be seen as a sampling process by
following some criterion to actively select and label those examples
which improve the performance of the classifiers during the iteration
from the unlabeled example pool. Instead of randomly picking
unlabeled examples, it selects the examples that are considered the
most informative for human labeling and then updates the classifica-
tion model by incorporating them into the existing labeled set [20].
Through this process, a predictor trained on a small number of well-
chosen examples can perform comparably to a predictor trained on a
large set of randomly chosen examples [3,11,25].

From the algorithm perspective, active learning methods may be
grouped into three classes [22]. The first class of active learning
methods is based on uncertainty sampling which relies on the
estimation of the posterior probability distribution function of the
classes [9,16]. It selects the examples which are the most uncertain
according to the values of their posterior probabilities. For a binary
problem, the selected examples are the ones which give the class
membership probability closest to 0.5. In this paper, we use Gaussian
processes (GP) to provide a probabilistic prediction estimate of
uncertainty. In addition, active learning of Gaussian processes (GPAL)
has been successfully used for object categorization [7,8]. The second
class of active learning methods is based on large margin-based
heuristics which utilize the geometrical features of SVM [1,13] and
has been widely used in many practical applications, such as species
recognition [10], text mining [19] and remote sensing image retrieval
[21]. For example, the margin sampling (MS) strategy selects for
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labeling the candidates lying within the margin of the current SVM
since these examples are the most likely to become new support
vectors [1,17]. The efficiency and robustness of this method have been
discussed and proved in [12,23]. The last class of active learning is
committee-based heuristics [4,28]. The committee members are
composed of several different classifiers, which are trained to label
the unlabeled examples. The task is to select the candidates where the
disagreement between the classifiers is maximal.

From the three classes of active learning methods, we can see
that the first one and second one are based on a single classifier,
while the third one is based on multiple classifiers. Although some
active learning methods have been proposed for selecting unla-
beled examples for tagging, comparison among the different types
of active learning mechanism can rarely be found in the active
learning literature. This paper aims to address this issue. In this
paper, we compare the effectiveness of the first two active
learning methods (take MS and GPML as the representative) since
they both rely on the single classifier.

Moreover, informativeness and representativeness are two main
criteria which are widely used for active query selection [6]. Informa-
tiveness measures if an examples can reduce the uncertainty of a
statical model, while representativeness measures the ability of an
example in representing the overall input patterns of all the unlabeled
examples [18]. However, most active learning methods only consider
one of the two criteria when selecting unlabeled data, which greatly
limit the availability of active learning. For example, both of GPAL and
MS only deploy the informativeness criterion. In the process of active
example selection, we usually select the most informative examples
from all unlabeled data without considering the structural information
and spatial diversity among them. This will lead to a result that in the
same area there are more than one point to be selected, and thus it is
possible to produce redundancy which can decrease the classification
accuracy. To overcome this shortcoming, recently two improved
versions of MS and GPAL were introduced, which are called GPMAL
[26] and IMS [27], respectively. GPMAL and IMS combine the
informativeness and representativeness criteria by applying an algo-
rithm called manifold-preserving graph reduction (MPGR). By using
MPGR, one can construct a subset which represents the global
structure of the original distribution of samples. Such a modification
of GPAL and MS can avoid oversampling on dense regions to a large
extent.

The main contribution of this paper is that we compare the two
classes of classical active learning methods (GPML and MS) and their
improved versions (GPMAL and IMS) which are based on a single
classifier. Besides, we introduce a state-of-the-art active learning
approach which also combines the informativeness and representa-
tiveness of an examples, termed QUIRE [6]. We compare them in the
aspects of classification performance and time cost. In this paper, the
SVM classifier has been used to provide the comparison for all active
learning methods.

This paper is organized as follows: In Section 2, we briefly review
some background about GPAL and MS. In Section 3, we describe the
two improved versions which apply MPGR to the original active
learning methods. In Section 4, we show the experimental results on
multiple datasets to present the performance and time comparison of
all methods. Finally, we provide concluding remarks in Section 5.

2. Background

In this section, we briefly review some basic knowledge related
to active learning of Gaussian process and margin sampling.

2.1. Active learning algorithms

Supposewe have a training set X composed bym labeled examples,
i.e., X ¼ ðx1; y1Þ;⋯ðxm; ymÞ

� �
(xiARd) with the corresponding labels

y¼ ½y1; y2;…ym�> (yiAf71g). We wish to add to the training set a
series of examples from a set of n unlabeled points U ¼ u1;u2;⋯unf g,
with ncm. X and U have the same features. Instead of choosing
unlabeled examples randomly, active learning selects valuable exam-
ples according to a problem-oriented heuristic which aims at max-
imizing the performances of the classifiers. Generally speaking, active
learning is a process of guiding the sampling process by actively
selecting and labeling the most informative or representative candi-
dates from a large pool of unlabeled examples, which can effectively
reduce the size of the training set and simultaneously improve the
performance of the model. For simplicity, in this paper we mainly
consider the two-class problem. As to multi-class classification, we use
one-vs-rest to convert the multi-class problem to multiple two-class
problems.

2.2. Active learning of Gaussian processes

2.2.1. Gaussian processes
Here we first briefly summarize Gaussian processes to facilitate

the subsequent introduction of GPAL.
As mentioned above, Gaussian processes provide probabilistic

prediction estimates and thus are well-suited for active learning. A
Gaussian process is a stochastic process specified by its mean
and covariance function [15]. Given a data set with m
examples X ¼ fx1; x2;…xmg, the corresponding class labels are
y¼ ½y1; y2; …ym�> and latent variables are t¼ ft1; t2;…tmg.

The prior distribution defines the probabilistic relationship
between the examples X and the latent variables t. After putting
a Gaussian processes prior, the prior distribution for the latent
variables is assumed to be Gaussian:

pðtjX;θÞ ¼Nðtj0;KÞ ð1Þ
with a zero mean and a covariance matrix K. K is a kernel matrix
which is parameterized by the hyperparameter θ.

The likelihood models the probabilistic relationship between
the label y and the latent variable t. In this work we assume that y
and t are related via a Gaussian noise model. The Gaussian
observation likelihood is

pðyj tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp�ðy� tÞ2
2σ2 ð2Þ

where σ2 is the noise model variance. Although the Gaussian noise
model is originally developed for regression, it has also been proved
effective for classification, and its performance typically is comparable
to the more complex probit and logit likelihood models used in
classification problems [7]. For its simplicity and a closed form solution
for iterations, we use the Gaussian noise model in our experiments.
The joint likelihood can be written as

pðy; tjX;θÞ ¼ pðtjX;θÞpðyj tÞ ð3Þ
After integrating out the latent variables, the marginal likelihood will
be

PðyjXÞ ¼Nðyj0;Kþσ2IÞ: ð4Þ
The prediction distribution for the label yu at a new point xu is

also a Gaussian:

Pðyu jX; y; xuÞ �NðYu;ΣuÞ; ð5Þ
where

Yu ¼ k>
n
ðσ2IþKÞ�1y; ð6Þ

Σu ¼ ~kðxu; xuÞ�k>
n
ðσ2IþKÞ�1k>

n
; ð7Þ

Here, ~k is the covariance function and kn is the vector of
covariances between xu and the training data, which is given by
kn ¼ ½kðxu; x1Þ;…; kðxu; xmÞ�> . Moreover, since yu and tu are linked
by the Gaussian noise model, the predictive distribution over the
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