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a b s t r a c t

This paper proposes a novel method for supervised subspace learning based on Single-hidden Layer
Feedforward Neural networks. The proposed method calculates appropriate network target vectors by
formulating a Bayesian model exploiting both the labeling information available for the training data and
geometric properties of the training data, when represented in the feature space determined by the
network's hidden layer outputs. After the calculation of the network target vectors, Extreme Learning
Machine-based neural network training is applied and classification is performed using a Nearest
Neighbor classifier. Experimental results on publicly available data sets show that the proposed approach
consistently outperforms the standard ELM approach, as well as other standard methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Extreme Learning Machine (ELM) is an algorithm that has been
successfully applied for Single-hidden Layer Feedforward Neural
(SLFN) networks training, leading to fast network training with low
human supervision [1]. The main idea in ELM-based approaches is
that the network's hidden layer weights and bias values need not to be
learned and can be determined by random assignment. By adopting
either the squared loss [2] or the hinge loss [3] of the prediction error,
the network output weights are, subsequently, analytically calculated.
This approach is not in line with conventional SLFN network training
approaches, like the Back-propagation [4] and the Levenberg–Mar-
quardt [5] algorithms, where both the network's hidden and output
parameters are adjusted by following an optimization process, e.g., by
applying gradient descend-based optimization. However, despite the
random hidden layer parameters determination, it has been proven
that SLFN networks trained by using the ELM algorithm have the
properties of global approximators [6,7]. ELMs not only tend to reach
the smallest training error, but also the smallest output weight norm.
For feedforward networks reaching a small training error, smaller
output weight norm results in better generalization performance [8].
Due to its effectiveness and its fast learning process, the ELM network
has been adopted in many classification problems and many ELM
variants have been proposed in the last few years, extending the ELM
network properties along different directions [9–13].

While ELM-based techniques have proven their efficiency and
effectiveness in supervised [9,10,14] and semi-supervised [12,15,16]
classification, their application in subspace learning has not been well
investigated. An attempt to exploit the ELM approach in unsupervised

subspace learning has recently been proposed [16], where it has been
shown that ELM-based unsupervised subspace learning is able to
achieve excellent performance, and even outperform several state-of-
the-art unsupervised subspace learning methods. The application of
the ELM approach in supervised subspace learning has not been
investigated yet. This is probably due to the fact that previous works
have focused their attention either on designing good optimization
problems for the calculation of the network output weights, e.g.
[2,3,14], or to exploit Linear Algebra theory in order to determine a
good set of input parameters, e.g. [17–19]. However, for the design of a
supervised subspace learning technique based on regression models,
one should also focus on the determination of appropriate target
vectors. This paper focuses on the determination of such network
target vectors.

In more detail, in this paper, we propose an ELM-based supervised
subspace learning method that follows a Bayesian approach. We focus
our attention on designing appropriate network target vectors that are
able to capture both the class information that is available for the
training data and training data geometric properties when represented
in the feature space determined by the network's hidden layer
outputs, noted as ELM space hereafter. This is achieved by formulating
a Bayesian model that takes into account the ELM assumptions, which
are exploited in order to determine a convenient class representation
in the ELM space. Subsequently, the network can be trained by using
any of the methods proposed for supervised ELM network training
[1,2,20,19]. After the determination of the non-linear data mapping
function, classification in the feature space of reduced dimensionality
is performed by using the Nearest Neighbor classifier. We evaluate the
proposed approach in standard and real classification problems, where
we compare its performance with that of the standard ELM approach,
as well as with Kernel Spectral Regression [21] and Support Vector
Machine [22] based classification.
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The rest of the paper is organized as follows. We provide an
overview of ELM-based SLFN network training in Section 2. The
proposed approach for ELM network target vectors calculation is
described in Section 3. Experimental results evaluating the per-
formance of the proposed approach in standard and real classifi-
cation problems are provided in Section 4. Finally, conclusions are
drawn in Section 5.

2. Previous work

In this section, we describe the ELM, Regularized ELM (RELM)
and Kernel ELM (KELM) algorithms proposed in [1,2]. Subse-
quently, we briefly discuss extensions of the ELM approach that
have been recently proposed for supervised and semi-supervised
SLFN network training.

Let us denote by fxi; cigNi ¼ 1 a set of N vectors xiARD and the
corresponding class labels ciAf1 ,..., Cg. These vectors are
employed in order to train a SLFN network consisting of D input
(equal to the dimensionality of xi), L hidden and C output (equal to
the number of classes involved in the classification problem)
neurons. The number of hidden layer neurons is a parameter of
the algorithm and is usually selected to be much greater than the
number of classes, i.e., L⪢C [2,14]. In ELM-based approaches, the
network's input weights WinARD�L and the hidden layer bias
values bARL are randomly assigned, while the network's output
weights WoutARL�C are analytically calculated.

Let us denote by vj, wk and wkj the jth column of Win, the kth
row of Wout and the jth element of wk, respectively. Given an
activation function Φð�Þ for the network hidden layer neurons and
using a linear activation function for the network output layer
neurons, the response oi ¼ ½oi1 ,..., oiC �T of the network correspond-
ing to xi is calculated by

oik ¼
XL
j ¼ 1

wkj Φðvj; bj; xiÞ; k¼ 1;…;C: ð1Þ

It has been shown [7,23,2] that, almost any nonlinear piecewise
continuous activation function Φð�Þ can be used for the calculation
of the network hidden layer outputs, like the sigmoid, sine,
Gaussian, hard-limiting and Radial Basis Function (RBF), Fourier
series, etc. By storing the network hidden layer outputs ϕiARL

corresponding to all the training vectors xi; i¼ 1 ,..., N
in a matrix Φ¼ ½ϕ1 ,..., ϕN �, or

Φ¼
Φðv1; b1; x1Þ ⋯ Φðv1; b1; xNÞ
⋮ ⋱ ⋮
ΦðvL; bL; x1Þ ⋯ ΦðvL; bL; xNÞ

2
64

3
75; ð2Þ

Eq. (1) can be expressed in a matrix form as

O¼WT
outΦ; ð3Þ

where OARC�N is a matrix containing the network responses for
all training data xi.

Standard ELM algorithm [1] assumes zero training error. That is,
it is assumed that oi ¼ ti; i¼ 1; :::;N, or by using a matrix notation
O¼ T, where T¼ ½t1; :::;tN� is a matrix containing the network
target vectors. By using (3), the network output weights Wout

are analytically calculated by

Wout ¼Φ† TT ; ð4Þ

whereΦ† ¼ ΦΦT
� ��1

Φ is the generalized pseudo-inverse ofΦT .
After the calculation of the network output weights Wout , the
response of the corresponding to a vector xtARD is given by

ot ¼WT
outϕt ; ð5Þ

where ϕt ¼ ½Φðv1; b1; xtÞ; :::;ΦðvL; bL; xtÞ�T is the network hidden
layer output for xt .

The calculation of the network output weightsWout through (4)
is sometimes inaccurate, since the matrix ΦΦT is singular in the
case where L4N. A regularized version of the ELM algorithm that
allows small training errors and tries to minimize the norm of the
network output weights Wout has been proposed in [2], where the
network output weights are calculated by solving the following
optimization problem:

Minimize : J ¼ 1
2
‖Wout‖2F þ

c
2

XN
i ¼ 1

‖ξi‖
2
2 ð6Þ

Subject to : WT
outϕi ¼ ti�ξi; : i¼ 1;…;N; ð7Þ

where ξiARC is the error vector corresponding to xi and c40 is a
parameter denoting the importance of the training error in the
optimization problem. Based on the Karush–Kuhn–Tucker (KKT)
theorem [24], the network output weightsWout can be determined
by solving the dual optimization problem

~J ¼ 1
2
‖Wout‖2F þ

c
2

XN
i ¼ 1

‖ξi‖
2
2�

XN
i ¼ 1

ai WT
outϕi�tiþξi

� �
; ð8Þ

which is equivalent to (6). By calculating the derivatives of ~J with
respect to Wout , ξi and ai and setting them equal to zero, the
network output weights Wout are obtained by

Wout ¼ ΦΦT þ1
c
I

� ��1

ΦTT ; ð9Þ

or

Wout ¼Φ ΦTΦþ1
c
I

� ��1

TT ¼Φ Kþ1
c
I

� ��1

TT ; ð10Þ

where KARN�N is the ELM kernel matrix, having elements equal to
½K�i;j ¼ϕT

i ϕj [25]. In [2] it has been also shown that, by exploiting
the kernel trick [26–28], K can be any positive semidefinite kernel
matrix defined over the input data xi. By using (10), the response
of the network for a vector xtARD is given by

ot ¼WT
outϕt ¼ T Kþ1

c
I

� ��1

ΦTϕt

¼ T Kþ1
c
I

� ��1

kt ; ð11Þ

where ktARN is a vector having elements equal to kt;i ¼ϕT
i ϕt .

Several extensions of the ELM algorithm have been proposed in
the literature for supervised and semi-supervised classification
[20,3,11,29,12,19]. All approaches try either to design good opti-
mization problems for Wout calculation, or to exploit Linear
Algebra theory in order to determine a good set of input para-
meters fWin; bg. In the case of supervised classification, the
elements of the network target vectors ti ¼ ½ti1;…; tiC �T , each
corresponding to a training vector xi, are set to tik ¼ 1 for vectors
belonging to class k, i.e., when ci ¼ k, and to tik ¼ �1 when ciak.
In the case of semi-supervised classification, the target vectors of
the labeled training vectors are set as above, while the target
vectors of the unlabeled training vectors are set equal to zero. That
is, for the determination of the network target vectors, only the
labeling information of the training data is exploited. In the
following, we propose a method for the determination of the
network target vectors that takes into account both the training
data labels and training data geometric properties when repre-
sented in the ELM space.
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