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a b s t r a c t

Low-rank matrix factorization plays an important role in the areas of pattern recognition, computer
vision, and machine learning. Recently, a new family of methods, such as l1-norm minimization and
robust PCA, has been proposed for low-rank subspace analysis problems and has shown to be robust
against outliers and missing data. But these methods suffer from heavy computation loads and can fail to
find a solution when highly corrupted data are presented. In this paper, a robust orthogonal matrix
approximation method using fixed-rank factorization is proposed. The proposed method finds a robust
solution efficiently using orthogonality and smoothness constraints. The proposed method is also
extended to handle the rank uncertainty issue by a rank estimation strategy for practical real-world
problems. The proposed method is applied to a number of low-rank matrix approximation problems and
experimental results show that the proposed method is highly accurate, fast, and efficient compared to
the existing methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Low-rank matrix approximation has attracted much attention
in the areas of data reconstruction [1], image denoising [2–4],
collaborative filtering [5–7], background modeling [8,9], structure
from motion or motion estimation [1,10–12,3], and photometric
stereo [13,12], to name a few. It is usually assumed that the rank of
a matrix is fixed or known beforehand.

Although real-world data is usually high dimensional, it can be
well-represented with fewer parameters in many cases. Hence,
reducing the data dimension to a small number of dominating
principal components is desirable to reduce the computation time
and also to remove unwanted noisy components. A popular
method for addressing this issue is principal component analysis
(PCA) [14]. PCA transforms data to a low-dimensional subspace
which maximizes the variance of the data based on the l2-norm. To
handle the missing data, Srebro [5] solved a weighted low-rank
matrix approximation problem using the expectation–maximiza-
tion (EM) algorithm. In addition, there is a common technique
which adds regularization terms to prevent data overfitting and
solves the problem using semidefinite programming (SDP) [13].
These conventional l2-norm based approximation methods have
been utilized in many problems but it is known that they are

sensitive to outliers and missing data because the l2-norm ampli-
fies the negative effects of corrupted data.

As an alternative, low-rank matrix approximation methods
using the l1-norm have been proposed for robustness against
outliers [1–3,12,15–19] and extended to low-rank tensor approx-
imation problems [20–22]. These techniques assume a Laplacian
noise model instead of a Gaussian noise model. In addition, there
have been several probabilistic extensions of low-rank matrix
factorization for robust approximation [23,24].

Ke and Kanade [1] presented low-rank matrix approximation
methods by alternatively minimizing an l1-norm based cost func-
tion using convex programming. Eriksson and Hengel [3] proposed
a weighted low-rank matrix approximation method using the l1-
norm in the presence of missing data. However, these methods
require a heavy computational load since a large number of
iterations is required to find a good solution using convex
programming for optimizing a nonconvex and nonsmooth l1 cost
function [12]. Kwak [15] proposed PCA-l1 to find successive
principal components in the feature space based on the l1-norm.
However, it results in degradation of robustness against corrup-
tions since it uses a modified cost function which is different from
the original l1 cost function given in [1,3].

Robust principal component analysis (RPCA) has been proposed
to solve a low-rank and sparse matrix decomposition problem and
successfully applied to a number of problems [16,8,6,17,25]. RPCA
uses recent advances in rank minimization using the nuclear norm
with an l1-norm regularized term for a non-fixed rank matrix
approximation problem. They have shown that the RPCA methods
are suitable for problems, such as background modeling,
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corruption removal, and collaborative filtering [8,6,17]. However,
they have high computational complexity, especially for large-
scale problems, because it performs singular value decomposition
(SVD) at each iteration. To overcome this complexity issue, Liu
et al. [18] proposed a fast algorithm based on the tri-factorization
approach with an orthogonality constraint for low-rank matrix
recovery and completion problems. Recently, Shu et al. [26]
proposed efficient low-rank recovery methods based on a new
rank measure and showed their efficiency compared to conven-
tional RPCA methods.

Recently, many efficient matrix factorization algorithms using
the l1-norm under the augmented Lagrangian framework have
been proposed [2,12,27,19]. Shen et al. [2] proposed a low-rank
matrix approximation method using the l1-norm based on the
augmented Lagrangian alternating direction method (ALADM).
Zheng et al. [12] proposed a practical weighted low-rank approx-
imation method with an orthogonality constraint using ALM
(Regl1-ALM). Liu and Yan [28] presented an active subspace
method for a scalable nuclear-norm regularized optimization
problem. Cabral et al. [27] proposed an approach, which unifies
bilinear factorization and nuclear-norm minimization by utilizing
an alternative definition of the nuclear-norm. Kim et al. [19]
proposed two l1-norm based alternating rectified gradient meth-
ods to obtain efficient l1-norm based solutions with a convergence
guarantee. These l1-norm based methods have been successfully
applied to fixed-rank factorization problems in the presence of
missing data and outliers, outperforming RPCA methods.

In this paper, we present a new robust orthogonal matrix approx-
imation method using fixed-rank factorization based on the l1-norm
for low-rank subspace learning problems in the presence of various
corruptions. We introduce an efficient Frobenius-norm regularizer to
prevent the overfitting problem which can arise from an alternative
minimization algorithm and an orthogonality constraint to reduce the
solution space for faster convergence. The proposed regularized
optimization problem is constructed under the augmented Lagrangian
framework and solved using an alternating direction approach which
optimizes the cost function with respect to one variable at a time
while fixing the other variables. We also present a rank estimation
strategy for the propose methodwithout increasing the computational
complexity to overcome the disadvantage of fixed-rank factorization
and the parameterization issue when the exact rank of a problem is
unknown. We demonstrate that the performance of the proposed
method in terms of the reconstruction error and computational speed
in the presence of corruptions using well-known benchmark datasets
from non-rigid motion estimation, background modeling, and colla-
borative filtering.

This paper is organized as follows. In Section 2, we briefly
review the l1-norm based low-rank matrix approximation and
introduce approaches based on different regularization methods
and describe the difference between fixed-rank matrix factoriza-
tion and RPCA methods. The proposed algorithm and its extension
to rank estimation based method are described in Section 3. In
Section 4, we present various experimental results to evaluate the
proposed method with respect to other well-known low-rank
matrix factorization methods and RPCA methods.

2. Preliminaries

2.1. Robust low-rank matrix factorization

We briefly describe a fixed-rank matrix factorization problem
based on the l1-norm and discuss its related work. The problem
arises in a number of problems in computer vision, pattern
recognition, and machine learning to handle missing data and
outliers and obtain robust and exact solutions, such as rigid and

non-rigid motion estimation [29,11], collaborative filtering (CF)
[5–7], and background modeling [8,9,27], to name a few. A
minimization problem based on the l1-norm can be regarded as
a maximum likelihood estimation problem under the Laplacian
noise distribution [1,19].

We first consider an approximation problem for vector
y¼ ½y1 y2 … ym�T by a multiplication of vector xARm and scalar
α, i.e.,

y¼ αxþδ; ð1Þ
where δ is a noise vector whose elements have the independently
and identically distributed Laplacian distribution [19]. The prob-
ability model for (1) can be written as

pðyjxÞ � exp �‖y�αx‖1
s

� �
; ð2Þ

where ‖ � ‖1 denotes the l1-norm, and s40 is a scaling constant
[1]. Maximizing the log likelihood of the observed data is equiva-
lent to minimizing the following cost function for given x:

JðαÞ ¼ ‖y�αx‖1: ð3Þ
The problem (1) can be generalized to the problem of matrix

approximation. Let us consider the l1 approximation of matrix Y
such that

min
P;X

JðP;XÞ ¼ ‖Y�PX‖1; ð4Þ

where YARm�n, PARm�r , and XARr�n are the observation, pro-
jection, and coefficient matrices, respectively. Here, r is a pre-
defined parameter less than minðm;nÞ and PX is a low-rank
approximation of Y. In addition, since it is difficult to obtain
observations for all entries of the observation matrix in practice,
this problem can be considered as the following weighted low-
rank matrix approximation problem to consider unknown entries:

min
P;X

‖W � ðY�PXÞ‖1; ð5Þ

whereW is a weight or mask matrix, whose element wij is 1 if yij is
known and 0 if yij is unknown, and � is the component-wise
multiplication or the Hadamard product.

Despite the robustness against outliers, the discussed l1-norm
based methods require a heavy computational load for finding a
solution using linear or quadratic programming [1], which requires
a large number of iterations to obtain a reasonable solution,
making them applicable only for small-scale problems. To over-
come the computational complexity issue, methods based on an
augmented Lagrangian method (ALM) have been proposed [2,27]
and it solves the problem using an alternating minimization
technique, which minimizes the cost function with respect to
one target variable while other variables are held fixed. In
addition, a nuclear-norm regularized l1-norm minimization
method (Regl1-ALM) has been proposed to improve convergence
by introducing an implicit rank constraint into the cost function
via the bilinear form of PX [12,28]. Unlike the ALM based methods,
Kim et al. [19] proposed two l1-norm based alternating rectified
gradient methods to achieve robustness. They rectified the gra-
dient using QR factorization for quickness and found a step size
using the modified weighted median approach [19]. However, it is
difficult for a matrix factorization method to find the global
optimal solution because the considered problem is non-convex.
Furthermore, when the rank of the data matrix is unknown, the
problem becomes more challenging.

2.2. Robust principal component analysis (RPCA)

Low-rank matrix approximation finds a low-rank matrix repre-
sentation of an observation or data matrix, such that the difference
between the estimated low-rank matrix and the observation matrix is
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