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a b s t r a c t

With the ever-increasing amount of multimedia data on the web, hashing-based approximate nearest
neighbor search methods have attracted significant attention due to its remarkable efficiency gains and
storage reductions. Traditional unsupervised hashing methods are designed for preserving distance
metric similarity which may lead to semantic gap among the high-level semantic similarities. Recently,
attentions have been paid to semi-supervised hashing methods which can preserve data's a few available
semantic similarities (usually given in terms of labels, pairwise constraints, tags, etc.). However, these
methods often preserve semantic similarities for low-dimensional embeddings. When converting low-
dimensional embeddings into binary codes, the quantization error will be accumulated thus resulting in
performance deterioration. To this end, we propose a novel semi-supervised hashing method which
preserves pairwise constraints for both low-dimensional embeddings and binary codes. It first
represents data points by cluster centers to preserve data neighborhood structure and reduce the
dimensionality. Then the constraint information is fully utilized to embed the derived data representa-
tions into a discriminative low-dimensional space by maximizing discriminative Hamming distance and
data variance. After that, optimal binary codes are obtained by further preserving the semantic
similarities in the process of quantizing the low-dimensional embeddings. By utilizing constraint
information in the quantization process, the proposed method can fully preserve pairwise semantic
similarities for binary codes thus leading to better retrieval performance. Thorough experiments on
standard databases show the superior performance of the proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the explosive growth of data on the web, there is an urgent
demand of approximate nearest neighbor (ANN) search methods to
efficiently exploit user intent information from large web databases.
The main challenges for ANN methods are fast query and low storage
requirement. To meet this goal, various hashing methods have been
proposed recently. Hashing aims to map high-dimensional data, such
as documents, images, or videos, into a set of low-dimensional
compact binary codes while preserving the underlying similarity
relationship of the original data. The pairwise similarity comparisons
between these binary codes can be measured by Hamming distances
which only involve efficient bit-count operations thus can be com-
puted very quickly. Furthermore, only a small number of bits are
sufficient for binary codes to maintain the information required for
retrieval, which bring enormous storage savings. Due to these merits,
hashing methods have been successfully used in various applications

such as large-scale retrieval [1–3], feature descriptor learning [4,5], and
near-duplicate detection [6–8].

According to how much supervised information is used, hashing
methods can be classified as unsupervised, semi-supervised, and
supervised methods. Most representative hashing methods are unsu-
pervised, which are seeking to employ data information to compute
binary codes. Early endeavors in unsupervised hashing concentrated
on data-independent methods which are using random projections to
construct hash functions without exploiting the knowledge of training
data. Notable examples include Locality-Sensitive Hashing (LSH) [9],
Kernelized LSH (KLSH) [10], and Shift-Invariant KLSH (SKLSH) [11].
However, due to the limitation of random hash functions generating
scheme, LSH-like hashing methods need long binary codes to achieve
reasonable performance, therefore suffer from long query time and
high storage cost. To improve the limitation of data-independent
method, recent research focuses on data-dependent hashing methods
which can generate hash functions by making use of the correlations
between data points. Typical approaches are PCA-like hashing [12–15],
manifold-like hashing [16–19], and K-means-like hashing [20–22].

To preserve the semantic similarities, supervised hashing algo-
rithms have been employed to design more effective hash functions.
Linear discriminant analysis hashing (LDAHash) obtains hash functions
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by maximizing the between-class scatter among binary codes asso-
ciated with different classes [4]. Binary reconstructive embedding
(BRE) learns hash functions by minimizing the reconstruction error
between the original semantic similarities and the Hamming distances
of the corresponding binary embeddings [23]. Minimal loss hashing
(MLH) introduces a hinge-like loss function depending on semantic
similarity information and learns binary codes based on structural
prediction [24]. Supervised hashing with kernels (KSH) maps data to
hash codes whose Hamming distances are minimized on similar pairs
and simultaneously maximized on dissimilar pairs [25]. Although the
LDAHash can tackle supervision via easy optimization, it lacks of
adequate performance. BRE, MLH and KSH can obtain better search
accuracy than LDAHash whereas they often attribute to sophisticated
optimization and have expensive training cost. This imperfection has
greatly diminished the applicability of these methods to large-scale
tasks.

Usually, labeling samples requires much human expertise on large
scale data set. For this reason, available supervised information can be
very limited. Semi-supervised methods will be helpful in this case.
They often take advantage of both supervised information and data's
underlying similarity information. Label-regularized max-margin par-
tition (LAMP) method uses kernel-based similarity and additional
small number of pairwise constraints as side information to generate
hash codes [26]. The encoding process is formulated within a
regularized maximum margin framework which can be solved by a
series of convex sub-problems with quadratic-program. However, the
optimization process is so complex that leading lengthy training
process and reducing the serviceability. Semi-supervised hashing
(SSH) minimizes the empirical error on the labeled data while
maximizing entropy of hash bits over the labeled and unlabeled data
[27]. According to different optimization algorithms, SSH has three
solutions, SSH-Orthogonal, SSH-Nonorthogonal and sequential projec-
tion learning for hashing (SPLH). SSH-Orthogonal and SSH-
Nonorthogonal first project the original data into low-dimensional
embeddings, and then quantize the embeddings into binary ones by
thresholding. However, the quantization error produced by this
conversion process will decrease the hashing performance. To reduce
the quantization error, SPLH is designed as a boosting learning
method. Each hash function in SPLH is intended to correct the errors
produced by the previous ones. The hash functions are learned
iteratively such that the pairwise label matrix is updated by imposing
higher weights on point pairs violated the preceding hash function.
However, SPLH judges every previous bit separately when deciding the
errors of the obtained projections to penalize them with the higher
weights. Since the similarities of hash codes should take consideration
of all bits holistically, SPLH may incur more errors. To solve this
problem, Bootstrap sequential projection learning for semi-supervised
nonlinear hashing (Bootstrap-NSPLH) method is proposed [28]. It
utilizes bootstrap sequential projection learning to rectify the quanti-
zation errors by taking into consideration of all the previously learned
bits holistically. However, Bootstrap-NSPLH is mainly designed for
label information. When weaker supervised information such as
pairwise constraint is available, it needs calculating the pairwise

Hamming similarity matrix (for N training data points, the size of this
matrix will be N � N) for the whole data set as pairwise constraint
information is often scattered. This is intolerable for the large data set
for the enormous storage space and large amount of calculation.

To effectively reduce the quantization error accumulated dur-
ing converting low-dimensional embeddings into binary codes
after relaxation and efficiently use the pairwise constraints, we
propose semi-supervised constraints preserving hashing (SCPH)
method in this paper. Fig. 1 illustrates the flowchart of the
proposed method. It first partitions the data points into some
clusters and represents the data points by cluster centers to
preserve data neighborhood structure and reduce dimensionality.
Then constrain information is fully utilized to embed the derived
data representations into a discriminative low-dimensional space
by maximizing discriminative distance and data variance. After
that, optimal binary codes are obtained by preserving the semantic
similarities in the process of quantizing the low-dimensional
embedding. The main contributions are summarized as follows:

� A discriminative low-dimensional space is learned in which points
with similar constraints are pushed as close as possible, while
points with dissimilar constraints are pulled away as far as possible.

� Constraint information is further utilized to guide the quantization
process. The obtained discriminative low-dimensional embeddings
are quantized into Hamming space by jointly maximizing the
binary codes’ discriminability and minimizing the quantization
error. This makes the similarities of binary codes consistent with
the pairwise constraints as much as possible.

� The proposed method has more applicability as the weaker
supervised information that is pairwise constraint can be used.
When other supervised information for example label or tag is
available, it is also useful as pairwise constraint can be readily
derived from them.

The rest of this paper is organized as follows. The proposed
SCPH method is presented in Section 2. Section 3 gives its
computational complexity analysis. Section 4 shows the experi-
mental results and analysis on popular image data sets. Finally,
Section 5 is the conclusion.

2. Semi-supervised constraints preserving hash codes learning

Given a training set of n data points, denoted as fx1; x2;…; xng
with xiARd, which form the rows of the data matrix XARn�d. The
data set also includes a fraction of pairwise constraint information
with similar pair set M in which ðxi; xjÞAM implies that xi and xj
belong to the same class, and dissimilar pair set C in which
ðxi; xjÞAC implies that xi and xj belong to different classes. Our
goal is to learn binary codes YAf1; �1gn�r 1 of the data set through
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Fig. 1. Flowchart of the proposed semi-supervised constraints preserving hashing method.

1 Converting �1/1 codes to 0/1 codes is a trivial shift and scaling operation.
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