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a b s t r a c t

In this paper, the generalized inverse representations for the Laplacian block matrices of graphs G1⊡G2

and G1⊟G2 are proposed, based on which the explicit resistance distance can be obtained for the
arbitrary two-vertex resistance in the electrical networks. Moreover, some numerical examples are
presented, which show the correction and efficiency of the obtained results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and undirected. Let G¼ ðV ðGÞ; EðGÞÞ be a graph with vertex set VðEÞ ¼ fv1; v2;…; vng and
edge set EðGÞ ¼ fe1; e2;…; emg. The adjacency matrix of G, denoted by A(G), is the n� n matrix whose (i, j)-entry is 1 if vi and vj are adjacent
in G and 0 otherwise. Denote D(G) to be the diagonal matrix with diagonal entries dGðv1Þ; dGðv2Þ;…; dGðvnÞ. The Laplacian matrix of G is
defined as LðGÞ ¼DðGÞ�AðGÞ. Let B(G) denote the vertex-edge incidence matrix of G, which is the n�m matrix whose (i, j)-entry is 1 if vi is
incident to ej and 0 otherwise. The adjacency matrix and the Laplacian matrix of a graph find use in various aspects of structural analysis,
and the spectrums of these matrices determine significant topological characteristics of graphs, such as energy, clustering and the number
of spanning trees [1,2]. For other undefined notations and terminology from graph theory, the readers may refer to [1] and the references
therein.

Klein and Randić [3] introduced a new distance function named resistance distance based on electrical network theory, and they
viewed G as an electrical network and replaced each edge e of G with a unit resistance, the resistance distance between any two vertices i
and j, denoted by rij(G), is defined to be the effective resistance between i and j as computed by Ohm's and Kirchhoff's laws [3]. The
resistance distances attracted extensive attention of physicists, chemists, as well as mathematicians, due to its wide applications. [4–7,11].
For more information on resistance distances of graphs, the readers are referred to the most recent papers [9,10,12–18,26,28–30].

A large amount of graph operations are introduced in [19–22], such as the Cartesian product, the corona and the edge corona. All these
operations are important constructions of different classes networks. It is well known that the subdivision graph S(G) of a graph G is the
graph obtained by inserting a new vertex into every edge of G. Let G1 and G2 be two vertex disjoint graphs. The following two definitions
come from [21].

Definition 1.1 (See [21]). The subdivision-vertex neighborhood corona of G1 and G2, denoted by G1⊡G2, is the graph obtained from SðG1Þ
and ∣VðG1Þ∣ copies of G2, all vertex-disjoint, and joining the neighbors of the i-th vertex of VðG1Þ to every vertex in the i-th copy of G2.
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Definition 1.2 (See [21]). The subdivision-edge neighborhood corona of G1 and G2, denoted by G1⊟G2, is the graph obtained from SðG1Þ
and ∣IðG1Þ∣ copies of G2, all vertex-disjoint, and joining the neighbors of the i-th vertex of IðG1Þ to every vertex in the i-th copy of G2, where
IðG1Þ is the set of inserted vertices of SðG1Þ.

Bu et al. obtained resistance distances in subdivision-vertex join and subdivision-edge join of graphs [7]. Motivated by the above
results, in this paper we further investigated the resistance distances in G1⊡G2 and G1⊟G2. Comparison to subdivision-vertex join and
subdivision-edge join of graphs, the subdivision-vertex neighborhood corona and subdivision-edge neighborhood corona graphs have
more vertices and edges, it is clear that handling the problems of the generalized inverse representation for Laplacian matrices and the
resistance distances is not an easy task but we deduced it in spectral graph theory approach, which is based on Laplacian generalized
inverse.

The rest of the paper is organized as follows. In Section 2, we provide some lemmas and preliminaries. Main results and application are
proposed in Sections 3 and 4, respectively. We conclude the paper in Section 5.

2. Preliminaries

The Kronecker product A � B of two matrices A¼ ðaijÞm�n and B¼ ðbijÞp�q is the mp� nq matrix obtained from A by replacing each
element aij by aijB. This is an associative operation with the property that ðA � BÞT ¼ AT � BT , and ðA � BÞðC � DÞ ¼ AC � BD whenever the
products AC and BD exist. The reader is referred to [25] for other properties of the Kronecker product not mentioned here.

The Moore–Penrose pseudo-inverse of matrices have numerous applications in singular differential equations, Markov chains and
iterative methods, etc. [27]. We review the definition of Af1g inverse of a given matrix A. Let A be a matrix, X is called the f1g inverse of A
and denoted by Af1g, if X satisfies the following condition: AXA¼ A. [23] Given a square matrix A, the group inverse of A, denoted by A#, is
the unique matrix Xthat satisfies matrix equations AXA¼ A;XAX ¼ X;AX ¼ XA. [7] If A is real symmetric, then A# exists and A# is a
symmetric f1g�inverse of A. In fact, A# is equal to the Moore–Penrose inverse of A since A is symmetric [7].

The Laplacian matrices are singular and the group inverse is exploited in electric network with undirected graphs. For more
information, the readers is referred to [7,24]. It is known that resistance distances in a connected graph G can be obtained from any
f1g�inverse of L(G) by the following lemma [7].

Lemma 2.1 (See [7]). Let G be a connected graph, and ðLð1ÞG Þij denote the ði; jÞ�entry of Lf1gG . Then

rijðGÞ ¼ ðLð1ÞG ÞiiþðLð1ÞG Þjj�ðLð1ÞG Þij�ðLð1ÞG Þji ¼ ðL#GÞiiþðL#GÞjj�2ðL#GÞij:

Lemma 2.2 (See [7]). Let M¼ ½AC B
D� be a nonsingular matrix. If A and D are nonsingular. Then

M�1 ¼ A�1þA�1BS�1CA�1 �A�1BS�1

�S�1CA�1 S�1

" #
;

where S¼D�CA�1B is the Schur complement of A in M.

The following result is very similar to Lemma 2.2, which is proved in [8], thus it is omitted here.

Lemma 2.3 (See [8]). Let L¼ ½L1
LT2

L2
L3
� be the Laplacian matrix of a connected graph. If L1 is nonsingular, then

X ¼
L�1
1 þL�1

1 L2S
#LT2L

�1
1 �L�1

1 L2S
#

�S#LT2L
�1
1 S#

" #

is a symmetric f1g�inverse of L, where S¼ L3�LT2L
�1
1 L2.

3. Main results

3.1. Laplacian generalized inverse of subdivision-vertex neighborhood corona graphs G1⊡G2

We first give the Laplacian generalized inverse of graph G1⊡G2.

Theorem 3.1. Let G1 be an r1-regular graph on n1 vertices and m1 edges, and G2 an arbitrary graph on n2 vertices, then the following matrix:

T1þT1HS
#
2H

TT1 KBTS�1
1 þT1HS

#
2H

TKBTS�1
1 T1HS

#
2

KS�1
1 BþKS�1

1 BHS#2H
TT1 S�1

1 þKS�1
1 BHS#2H

TKBTS�1
1 KS�1

1 BHS#2
S#2H

TTT
1 KS#2H

TBTS�1
1 S#2

2
664

3
775

is a symmetric f1g�inverse of LðG1⊡G2Þ, where T1 ¼ ð2þ2n2Þ�1Im1 þð2þ2n2Þ�2BTS�1
1 B, S1 ¼ r1In1 �ð2þ2n2Þ�1BBT , H ¼ 1T

n2
� BT ;K ¼ ð2þ

2n2Þ�1, S2 ¼ ðLðG2Þþr1In2 Þ � In1 �½1n2 � B�T1½1T
n2
� BT �.

Proof. Let G1 be an arbitrary r1�regular graphs with n1 vertices and m1 edges, and G2 be an arbitrary graphs with n2 vertices. Labelling
the vertices of G1⊡G2 as follows. Let IðG1Þ ¼ fe1; e2;…; em1 g, VðG1Þ ¼ fv1; v2;…; vn1 g and VðG2Þ ¼ fw1;w2;…; wn2 g. For i¼ 1;2;…;n1, let
wi

1;w
i
2…;wi

n2 denote the vertices of the i-th copy of G2, with the understanding that wi
j is the copy of wj for each j. Denote

Wj ¼ fw1
j ;w

2
j ;…;wn1

j g for j¼ 1;2;…;n2. Then

IðG1Þ⋃VðG1Þ⋃½W1⋃W2⋃⋯⋃Wn2 � ð1Þ
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