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a b s t r a c t

This paper is concerned with the finite-time synchronization for a class of stochastic genetic regulatory
networks (GRNs). The purpose of the addressed problem is to design a controller that can synchronize
the concentration of the mRNA and the protein of GRNs in finite time with probability. Based on the
recent finite-time stability theorem of stochastic nonlinear systems, sufficient conditions are first
established for ensuring the finite-time stochastic stability of synchronization error in probability. Then,
the gain parameters of the controller are obtained by solving a linear matrix inequality and the robust
finite-time synchronization is guaranteed for GRNs with uncertain parameters. Compared with the
previous references, a continuous finite-time controller is designed to achieve the synchronization
objective and a constructive method that may accelerate the convergence is discussed. Finally, two
numerical examples are given to illustrate the effectiveness of the proposed design method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is known that, gene expression is a gene-to-protein process
mainly consisting of transcription and translation. The mechanisms
that genes encode proteins and some of which in turn regulate gene
expression is called the Genetic Regulatory Networks (GRNs). In order
to perform the multitude of functions necessary to survive, cells must
be able to regulate the expression pattern of their genes [1], which is
generally completed through GRNs – intricate webs of interactions
between regulatory elements controlling protein production. The
GRNs actually act as a complex dynamical system because a great
number of genes and proteins either directly or indirectly interact with
one another by activation and repression [2,3]. Clarifying the complex
dynamics of GRNs not only is essential for the understanding of the
rhythmic phenomena of living organisms, but also has many potential
applications in bioengineering fields. For example, the authors in [4]
investigated the synchronization of cellular clock in the suprachias-
matic nucleus by an experimental method. In recent years, due to
great progress in genome sequencing, GRNs have emerged as a new
research area of biological and biomedical sciences, and considerable
attention has been contributed to theoretical analysis and experi-
mental investigation on GRNs [5–9].

To better understand the regulatory mechanisms of gene net-
works, both quantitatively and qualitatively, biologists and math-
ematicians construct system models that can be studied in detail
[10]. Research shows that, the stochastic fluctuations for the GRNs
might occur at various stages such as transcription, translation,
transport, and chromatin remodeling which stem from either
probabilistic chemical reactions or random variations. Therefore,
state-dependent stochastic noise should be recognized as an
indispensable character that has to be taken into account when
modeling GRNs [9,11]. Recently, the stochastic differential
equation (SDE) has been employed to describe the molecular
fluctuation in GRNs [12]. Moreover, parameter uncertainties are
arguably becoming another challenging issue that impact on the
model quality. It is very likely that the parameters of the built
model identified from the experimental data will unavoidably vary
from time to time, which largely reduces the practical significance
of the aforementioned dynamical models built by the SDE [13–15].
Therefore, it is needed to estimate the unknown network states
based on some available known systems such that the error
system converges to zero in the mean square sense [9,11,13–16].

This paper aims to provide some theoretical results for study-
ing the synchronization of GRNs with noise perturbations and
uncertain parameters by the control theory approach. There exist
many reasons why the synchronization issue of GRNs should be
studied heavily, only three ones among them are shown here
because of the space constraints. Firstly, synchronization is a basis
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to understand an unknown dynamic system from one or more
well-known dynamic systems, which means two or more systems
asymptotically share a common dynamic behavior. Secondly,
because naturally occurring GRNs are generally much more
complicated, the study of synchronization among GRNs is impor-
tant for the understanding of the rhythmic phenomena of living
organisms at both molecular and cellular levels [3]. Thirdly, in
cellular physiology, we need to focus on how proteins produce and
how gene networks are regulated, which could be better under-
stood by considering the synchronization of GRNs. We hope to
synchronize the complex GRNs by some relatively simple systems
which nevertheless display rich dynamical behaviors and provides
some opportunity to test theoretical results of genetic regulation.

Generally, synchronization can be induced by external forcing or by
coupling, and many types of synchronization have been presented in
the past decades [17]. Similarly, there have a large number of
experimental and theoretical works studying the synchronization in
genetic networks [18,19]. Unfortunately, almost all the discussions in
the existing literature regarding the convergence of synchronization
error do not consider the convergence speed, even though we eagerly
want to synchronize network states as quickly as possible in practical
applications. In order to achieve faster synchronization and to realize
synchronization in finite time rather than merely asymptotically [20],
an effective method is to use finite-time techniques, which are
demonstrated to have better robustness and disturbance rejection
properties [21].

Recently, many kinds of finite-time issues have attracted
particular research interests, and there have been some results
on finite-time stabilization, convergence, synchronization, con-
sensus [21–30]. Normally, the term of uðtÞ ¼ �h signðδðtÞÞjδðtÞj α ,
0rαo1 was introduced in the above references, where δðtÞ
denotes the error and h the gain. For the different values of
parameter α, such techniques can generally be divided into two
types: (i) continuous (when 0oαo1) [31–33] and (ii) discontin-
uous (when α¼ 0) [34–36]. In this paper, the first type of u(t) will
be introduced into the design of the finite-time stochastic synchro-
nization (FTSS) for GRNs, and another one will be discussed to
optimize the synchronization speed.

Motivated by the above questions, in this paper, in order to
realize the FTS of the stochastic GRNs, a continuous controller is
addressed. Compared with [31–33], the difference of this paper
lies in the following three aspects. First, based on the finite-time
stability theorem of stochastic nonlinear systems [22–24], a new
finite-time controller is proposed for GRNs with noise perturba-
tions. Moreover, in contrast to [31–33], the FTS in this paper is
guaranteed by constructing a suitable Lyapunov functional and the
obtained conditions are easier to be satisfied. Second, the gain
parameters of controller can be designed by solving a linear matrix
inequality and the robust finite-time stochastic synchronization
(RFTSS) for GRNs with parameter uncertainties can be realized as
well. Finally, in order to explore the upper bound of the settling
time as small as possible, we further discuss the relationship
between the settling time and the parameter α, including the
situation of α¼ 0.

The notations in this paper are quite standard. Rn and Rn�m

denote, respectively, the n dimensional Euclidean space and the
set of all n�m real matrices. The superscript “T” denotes the
transpose and the notation XZY (respectively, X4Y) where X and
Y are symmetric matrices, mean that X�Y is positive semi-definite
(respectively, positive definite). λmaxðMÞ and λminðMÞ denote the
maximal and minimal eigenvalues of real matrix M respectively.
Let ðΩ;F ; F tf gtZ0;PÞ be a complete probability space with a
filtration fF tgtZ0 satisfying the usual conditions (that is, it is right
continuous and contains all P-null sets). Efxg stands for the
expectation of the stochastic variable x with respect to the given
probability measure P. I and 0 represent the identity matrix and

the zero matrix, respectively. diagð� � �Þ stands for a block-diagonal
matrix; matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Model formulation and preliminaries

2.1. Network description

Consider the following genetic network, which is established as
follows:

dmðtÞ
dt

¼ �AmðtÞþBf ðpðtÞÞþ J;

dpðtÞ
dt

¼ �CpðtÞþDmðtÞ;

8>><
>>: ð1Þ

where mðtÞ ¼ ðm1ðtÞ;m2ðtÞ;…;mnðtÞÞT , pðtÞ ¼ ðp1ðtÞ; p2ðtÞ;…; pnðtÞÞÞT
denote, respectively, the concentrations of mRNA and protein of
the gene at time t, A¼ diagða1; a2;…; anÞ and C ¼ diagðc1; c2;…; cnÞ
represent the degradation rates of mRNA and protein, respectively,
and D¼ diagðd1; d2;…; dnÞ is the translation rate.

The nonlinear function f ðpðtÞÞ ¼ ½f 1ðp1ðtÞÞ; f 2ðp2ðtÞÞ;…; f nðpnðtÞÞ�T ,
where

f jðpjðtÞÞ ¼
pjðtÞ=βj

1þðpjðtÞ=βjÞHj
;

with Hj being the Hill coefficient and βj being a positive scalar. The
matrix B¼ ðbijÞn�n is the coupling matrix of the genetic network
defined as follows: if transcription factor j is an activator of gene i,
then bij ¼ aij; if there is no connection between j and i, then bij ¼ 0; if
transcription factor j is a repressor of gene i, then bij ¼ �aij. Here, aij
is a positive scalar that denotes the transcriptional rate of transcrip-
tion factor j to gene i. J ¼ ½J1; J2;…; Jn�T is defined as a basal rate by
Ji ¼

P
jAVi

aij, where Vi is the set of repressor of gene i.
Since fi (i¼ 1;2;…;n) is a monotonically increasing and differ-

entiable function with saturation, it satisfies 0rdf iðsÞ=dsr ~mf i ,
which is equivalent to

0r f iðs1Þ� f iðs2Þ
s1�s2

r ~mf i ; 8s1; s2AR: ð2Þ

For simplicity, let xðtÞ ¼ ½mT ðtÞ; pT ðtÞ�T . Accordingly, the system
(1) becomes

dxðtÞ ¼ ½ ~AxðtÞþ ~B ~f ðxðtÞÞþ Î J� dt; ð3Þ
where

~A ¼ �A 0
D �C

� �
; ~B ¼ B

0

� �
; ~I ¼ I

0

� �
and ~f ðxðtÞÞ ¼ f ðpðtÞÞ:

From (2), we know that the nonlinear function ~f ðxðtÞÞ satisfies
~f ðxðtÞÞð~f ðxðtÞÞ� ~Mf xðtÞÞr0; ð4Þ

where ~Mf ¼ ½0;Mf � with Mf ¼ diagð ~mf 1 ; ~mf 2 ;…; ~mfn Þ.
In this paper, we consider model (1) or (3) as the master

system. The response system is

dyðtÞ ¼ ½ ~AyðtÞþ ~B ~f ðyðtÞÞþ Î JþuðtÞ� dtþρðδðtÞÞ dωðtÞ; ð5Þ
where yðtÞ ¼ ½m̂T ðtÞ; p̂T ðtÞ�T and δðtÞ ¼ yðtÞ�xðtÞ is the error state, u
(t) is the controller, ωðtÞ is one-dimensional Brownian motion
defined on the probability space ðΩ;F ; fF tgtZ0;PÞ, and the inten-
sity function ρð�Þ is the noise intensity vector satisfying the
following condition:

trace½ρT ðδðtÞÞρðδðtÞÞ�r‖MδðtÞ‖2; ð6Þ
where M is a matrix with appropriate dimensions.
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