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a b s t r a c t

This paper studies the regional pole placement problem for a class of T–S fuzzy systems. Firstly, a
definition for the fuzzy systems to be D stable is given from the viewpoint of Lyapunov functions. Then a
new sufficient condition is proposed to guarantee all the poles of the fuzzy systems located within a
prescribed LMI region by using the fuzzy Lyapunov functions method and introducing some free
matrices. And then the controller design approach is given by solving a set of LMIs. Finally, numerical
examples are given to illustrate the effectiveness of the proposed approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear systems have drawn considerable research atten-
tions in the past several decades [1]. As an efficient method to deal
with nonlinear systems, T–S model based fuzzy systems have also
attracted more and more researchers, see [2–13] and the refer-
ences therein. It has been shown that any smooth nonlinear
control systems can be approximated exactly by the T–S fuzzy
models with a set of linear subsystems [14], which provides a
natural, simple and effective design approach to complement
other nonlinear control techniques [15–19].

A great number of results on the analysis and design of T–S
fuzzy systems have been obtained since it was proposed by Takagi
and Sugeno in [20]. A common Lyapunov function was firstly
employed in [21] to prove the stability of the fuzzy systems.
However, for some cases, i.e. the number of the subsystems is very
large, common Lyapunov functions may not exist even if the
system is stable. Hence, much efforts have been done to get less
conservative stability conditions. In [22], a piecewise Lyapunov
function was proposed to solve the stabilization problem, where
each subsystem could be designed independently and the indivi-
dual solutions were combined to get a solution for the overall
design problem. The main drawback of the piecewise Lyapunov
method is that the result is formulated in form of BMIs [23], which

is hard to solve. To overcome this circumstance, a multiple
Lyapunov function method was used in [24,25] and a non-PDC
(parallel distribute compensation) controller design scheme was
proposed to get the LMIs condition. In [26], descriptor system
approach was used to further reduced the stability conservative-
ness. However, as the fuzzy Lyapunov function matrix depending
on the premise variable, the upper or lower bounds of the
membership functions should be know previously to compute
the controller, which increases the conservativeness. In [27], a new
fuzzy Lyapunov function was proposed and a stability condition
independent of the derivative of membership functions was
obtained. Based on [27], less conservative results were obtained
in [28] by using the free matrix technique[29–31].

On the other hand, the transient properties of the linear
systems could be guaranteed by placing the poles of the system
to some specified regions, which is also called the D stability
problem, see [32–34] and the references therein. However, for the
nonlinear system, few results have bee addressed about the D
stability problem. By using the common Lyapunov functions
method, the H1 controller design problem of the fuzzy systems
with pole location constraints was considered in [35,36] and
experiments showed that satisfactory transient performance can
be obtained by confining pole locations of the closed loop system.
In [37], the output feedback controller was designed for the LMI
regional pole placement problem of fuzzy systems, which was also
based on a common Lyapunov function. Piecewise Lyapunov
function was used in [38] to study the pole placement problem.
In [39], the pole placement problem of fuzzy descriptor system
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was studied and the circle region was considered. So far, for the
LMI regional pole placement problem of fuzzy systems, there is no
result available based on fuzzy Lyapunov functions, which moti-
vates the study of this paper.

This paper studies the regional pole placement problem for a class
of T–S fuzzy systems. A new sufficient condition is firstly proposed to
guarantee all the poles of the fuzzy systems located within a
prescribed LMI region by using the fuzzy Lyapunov functions method
and introducing some free matrices. And then the controller design
approach is given by solving a set of LMIs. Finally, numerical
examples are given to illustrate the effectiveness of the proposed
approach. The main contributions of this paper lie in the following
two aspect: (i) the fuzzy Lyapunov function method is firstly used to
solve the LMI reginal pole placement problem; (ii) some free
matrices are introduced to further reduce the conservativeness.

The rest of this paper is organized as follows: Section 2
presents the problem statement and some preliminaries; The
main results are given in Section 3; examples are given in
Section 4 to show the effectiveness of the proposed approach
and Section 5 is the conclusion.

Notation: Throughout this paper, Rn denotes the n dimensional
real Euclidean space, C denotes the complex plane, Ik is the k� k
identity matrix, the superscripts ‘T’ and ‘�1’ stand for the matrix
transpose and inverse respectively, s denotes the conjugate of s, ‘n’
denotes the symmetric element in a matrix, C� denotes the left-hand
side of complex plane. W40 ðWZ0Þ means that W is real,
symmetric and positive definite (positive semidefinite), � denotes
the Kronecker product. LþMþð�Þ denotes LþMþMT . If not explicitly
stated, the matrices are assumed to have compatible dimensions.

2. Problem statement and preliminaries

Consider the continuous time T–S fuzzy system described by
the following fuzzy rules [27]:

Model rule i : If x1ðtÞ is Mαi1
1 and …xjðtÞ is Mαij

j and…xnðtÞ is Mαin
n

Then _xðtÞ ¼ AixðtÞþBiuðtÞ
ð1Þ

where i denotes the ith fuzzy rule, xðtÞARn is the state vector,
uðtÞARm is the control input, AiARn�n and BiARn�m are the local
system matrices. the state variable xjðtÞðj¼ 1;2;…;nÞ is the pre-
mise variable. MðnÞ

j is the jth fuzzy set. Let rj be the number of xj-
based fuzzy sets, then the total number of fuzzy rules is r¼∏n

j ¼ 1rj
and αijð1rαijrrjÞ denotes which xj-based fuzzy set is used in the
ith fuzzy rule.

Remark 1. This model is proposed in [27]. To better understand
this model, consider the following fuzzy system:

R1: If x1ðtÞ is M1
1 and x2ðtÞ is M1

2, then _xðtÞ ¼ A1xðtÞþB1uðtÞ
R2: If x1ðtÞ is M2

1 and x2ðtÞ is M1
2, then _xðtÞ ¼ A2xðtÞþB2uðtÞ

R3: If x1ðtÞ is M1
1 and x2ðtÞ is M2

2, then _xðtÞ ¼ A3xðtÞþB3uðtÞ
R4: If x1ðtÞ is M2

1 and x2ðtÞ is M2
2, then _xðtÞ ¼ A4xðtÞþB4uðtÞ

Then α11 ¼ 1; α12 ¼ 1; α21 ¼ 2; α22 ¼ 1;α31 ¼ 1; α32 ¼ 2; α41 ¼ 2;
α42 ¼ 2.

Letωαij

j ðxjðtÞÞ denotes the membership function ofMαij

j , then the
normalized membership function is

ϕαij

j ðxjðtÞÞ ¼
ωαij

j ðxjðtÞÞPrj
αij ¼ 1ω

αij

j ðxjðtÞÞ

which satisfies

0rϕαij

j ðxjðtÞÞr1;
Xrj
αij ¼ 1

ϕαij

j ðxjðtÞÞ ¼ 1

Then the normalized membership function of the ith fuzzy rule
becomes

hiðxðtÞÞ ¼ ∏
n

j ¼ 1
ϕαij

j ðxjðtÞÞ

and

0rhiðxðtÞÞr1;
Xr
i ¼ 1

hiðxðtÞÞ ¼ 1

Omitting t in x(t) and u(t) for simplicity, and by using a singleton
fuzzifier, product inference and a center-average defuzzifier, the
following dynamic global model can be obtained:

_x ¼
Xr
i ¼ 1

hiðxÞfAixþBiug ð2Þ

The unforced system is given as

_x ¼AðhÞx¼
Xr
i ¼ 1

hiðxÞAix ð3Þ

Before giving out our main result, some definitions about D
stability are given as follows.

Definition 1 (Chilali and Gahinet [32]). A subset D of the complex
plane is called an LMI region if there exist a symmetric matrix
R1ARd�d and a matrix R2ARd�d such that

D¼ fs¼ σþ jωAC : R1þsR2þsRT
2o0g ð4Þ

d is called the order of the LMI region.

When R1 ¼ 0; R2 ¼ 1, the LMI region corresponds to the left half
plane of the complex plane. When R1 ¼ � r

q
q
� r

h i
and R2 ¼ 0

1
0
0

� �
, the

LMI region is a disk with center at ð�q;0Þ and radius r.

Definition 2. Given an LMI region defined by (4), a nonlinear
system _x ¼ f T ðxÞx is said to be D stable if there exists a Lyapunov
function V(x) satisfying ð1=2Þð _V ðxÞ=VðxÞÞAD, i.e.

R1 � 1þR2 � 1
2

_V ðxÞ
V ðxÞþRT

2 � 1
2

_V ðxÞ
VðxÞo0

Remark 2. This definition is adopted from [37] and the transient
performance of the nonlinear system can be guaranteed by
choosing the corresponding LMI regions. When the LMI region D
reduces to the left half plane, the D stability problem reduces to
the stability problem.

Our aim in this paper is to design a parallel distribute
compensation (PDC) controller such that the fuzzy closed loop
system is D stable. Let Ki be the state feedback gain of the ith local
model, the local control laws are as follows:

Control rule i : If x1 is Mαi1
1 and…xj is Mαij

j and…xn is Mαin
n

Then u¼ Kix
ð5Þ

Then the global fuzzy controller can be calculated by

u¼
Xr
i ¼ 1

hiðxÞKix ð6Þ

and the closed-loop system is

_x ¼AðhÞx¼
Xr
i ¼ 1

Xr
j ¼ 1

hiðxÞhjðxÞðAiþBiKjÞx: ð7Þ
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