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a b s t r a c t

Flexible Manifold Embedding (FME) has been recently proposed as a semi-supervised graph-based label
propagation method. It aims at estimating simultaneously the optimal prediction labels and its linear
regression. It integrates the label fitness, the manifold smoothness and a flexible term that forces the
linear regression to be as close as possible to nonlinear one. Despite its good performance compared to
its counterparts, FME may lead to poor performance when the geometrical structure of data is highly
nonlinear. In this paper, we propose a Kernel version of the Flexible Manifold Embedding (KFME). As in
classical FME, KFME uses labeled and unlabeled data to estimate the embedding of unlabeled data and
its regression function that can map new data samples. Extensive experiments carried out on eight
benchmark datasets show that the proposed KFME can outperform FME as well as many state-of-the-art
semi-supervised learning methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays massive high dimensional data are invading the
informatics world. The processing and the manipulation of these
massive data are not an easy task. Here lies the importance of
manifold learning and dimensionality reduction methods
[20,30,27]. These latters attempt to build a model of data (e.g,
estimating subspaces) that will be compact without having a
significant loss. Dimensionality reduction can be achieved by
either feature selection or feature extraction. Indeed, feature
selection methods choose the most important features of the data
and throw the less important ones. Whereas feature extraction
methods reduce features by a transformation or by making
combinations of the different features [18].

Principal Component Analysis (PCA) [25] and Local Discrimi-
nant Analysis (LDA) [10] are the best known methods for dimen-
sionality reduction. PCA is an unsupervised method that projects
samples according to the direction of the maximal variance,
preserving Euclidean distances. In contrast to PCA, LDA is a
supervised method that helps in classifying data, and in reducing
the dimension at the same time. This global method searches for
axes that minimize the distance between samples sharing the
same label and maximize the distance between samples having
different labels.

In order to maintain the intrinsic structure of information, the
nonlinear methods like Locally Linear Embedding (LLE) [19],
Laplacian Eigenmaps (LE) [3] and isometric mapping (ISOMAP)
[24] have been recently developed. Although ISOMAP and LE can
overcome the linear limitation of PCA and LDA, they suffer from
the out-of-sample problem, i.e., they cannot map new (unseen)
examples to their reduced subspace. Usually supervised methods
outperform unsupervised ones due to their additional information
provided by the labels [14]. However, in many experimental
works, collecting labeled data is not a trivial task. Labeled samples
can be expensive or unavailable. Here comes the importance of
semi-supervised methods that use both labeled and unlabeled
samples as training data [6,22]. Semi-supervised graph-based
methods are the focus of many research works because of their
increasing success [4,32,31,23,26,29]. They profit from labeled
information to gather samples of the same class and to separate
those of different classes, and profit at the same time from labeled
and unlabeled data to maintain the geometric data structure
[17,13]. In this context, Cai et al. [5] extended LDA to Semi-
supervised Discriminant Analysis (SDA) by integrating the locality
preserving criterion (depending on labeled and unlabeled sam-
ples) and adding a regularizer that controls the learning complex-
ity. In the same way, Huang et al. [11] extended Local Discriminant
Embedding (LDE) to Semi-supervised Discriminant Embedding
(SDE). Recently, a new projection function, which can easily
transform samples to their lower dimensional representation, got
a significant attention because it does not need to solve the
out-of-sample problem. In [17], the authors propose a label

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.04.042
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: fadi.dornaika@ehu.es (F. Dornaika).

Neurocomputing 167 (2015) 517–527

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.04.042
http://dx.doi.org/10.1016/j.neucom.2015.04.042
http://dx.doi.org/10.1016/j.neucom.2015.04.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.04.042&domain=pdf
mailto:fadi.dornaika@ehu.es
http://dx.doi.org/10.1016/j.neucom.2015.04.042


propagation framework called Flexible Manifold Embedding (FME)
which estimates simultaneously the optimal nonlinear prediction
labels, the linear regression function and the regression residue.
The regression function is estimated by adding a flexible term in
order to force the linear embedding to be as close as possible to
the nonlinear one. On the other hand, the first use of Kernel
paradigm in machine learning was in 1990 [9]. Kernel PCA was
introduced by Scholkopf in 1998 [21]. A kernelized version of LDA,
Kernel Fisher Discriminant (KFD), was also proposed by Mika et al.
[15] for two classes case and was extended by Baudat and Anouar
[1] to multi-class case. Yang et al. [28] proposed a Complete Kernel
Fisher Discriminant framework (CKFD) which has been used to
improve discriminant analysis by adding a regular and an irregular
subspaces.

In case of highly nonlinear structure of data, classical FME is not
able to make a good discrimination. To deal with this problem, we
propose, in this paper, a Kernel version of FME (KFME). In this
latter, we extend the FME objective function to its kernelized
version. The proposed method is also flexible because it looks for a
nonlinear manifold that is the closest to the Kernel-based
embedding.

Our proposed framework is characterized by the following
features:

� Unlike a lot of other frameworks, ours can easily transform
unseen data samples to the new subspace. These samples will
be as close as possible to their Kernel-based ones.

� KFME is based on a Kernel projection, which aims to solve the
data nonlinearity to some extent. However, the KFME formulation

includes the Laplacian smoothness term that makes the label
inference locally smooth. In other words, KFME attempts to
preserve the local data distribution via the pairwise similarity
matrix. We stress the fact that these two objectives are not
contradictory since overcoming the data nonlinearity is per-
formed globally while preserving data distribution works locally.

� The proposed KFME does not need a classifier since the
classification is included in the embedding.

The remainder of the paper is organized as follows. In Section 2,
we review the main semi-supervised methods including FME
method. Section 3 introduces our proposed KFME method. In
Section 4, we present experimental results and we make a compar-
ison of our proposed framework with different semi-supervised
methods applied on eight benchmark databases. Our conclusion is
presented in Section 5.

2. Related work

In this section, we introduce some state-of-the-art semi-
supervised learning methods, namely Semi-supervised Discrimi-
nant Analysis (SDA) [5], Semi-supervised Discriminant Embedding
(SDE) [11], Laplacian Regularized Least Square (LapRLS) [4], and
Flexible Manifold Embedding (FME) [17].

For this purpose, we will first present the notations that will be
used later in this paper. We define the data matrix X¼
½x1; x2;…; xl; xlþ1;…; xlþu�ARD�ðlþuÞ where D denotes the number
of features and N¼ lþu the total number of samples. xi j li ¼ 1 and
xi j lþu

i ¼ lþ1 are the labeled and unlabeled samples, respectively, with
l and u being the total numbers of labeled and unlabeled samples.
Let XL ¼ ½x1; x2;…; xl�ARD�l be the labeled samples matrix, and
yiAf1;2;…;Cg the label of the sample xi, where C is the total
number of classes. Let nc denote the total number of labeled
samples that belong to the cth class, and let SARN�N be the graph
similarity matrix. The element Sði; jÞ corresponds to the score
simðxi; xjÞ that represents the similarity between samples xi and
xj. There are several ways for computing the graph similarity
matrix. The score simðxi; xjÞ can be simply the inverse of the
Euclidean distance between xi and xj, or it can be a more complex
measure of distance such as the Gaussian [16]. Furthermore, the
graph similarity matrix can be estimated using data self-
representativeness techniques (e.g., [19,7]). The Laplacian matrix
LARN�N corresponding to the similarity matrix S is defined by
L¼D�S where D is a diagonal matrix whose elements are the row
sums of S (or column sums since S is symmetric).

We will consider special graphs for labeled samples: let Sw and
SbARl�l be the similarity matrices representing within and
between class graphs, respectively. Thus Swði; jÞ ¼ simðxi; xjÞ if xi
and xj share the same label, and Swði; jÞ ¼ 0 otherwise. And
Sbði; jÞ ¼ simðxi; xjÞ if xi and xj have different labels, and Sbði; jÞ ¼ 0
otherwise. The Laplacian matrices of Sw and Sb will be defined in
the same way as that of S by Lw and Lb, respectively.

Let YABN�C , where B¼ f0;1g, be the binary label matrix
associated with the samples so that Yði; jÞ ¼ 1 if yi ¼ j and
Yði; jÞ ¼ 0 otherwise. We also consider a matrix of labels FARN�C .
In the sequel 0 and 1ARN�1 represent two column vectors with all
elements equal to 0 and 1, respectively.

2.1. Semi-supervised discriminant analysis

By keeping the foundation of LDA presented by the research of axes
on which samples from the same class get similar representations and
samples from different classes will be far from each other as much as
possible, Cai et al. extended LDA to SDA [5] by adding a geometrically
based regularizer. LDA can be seen as a particular case of graph-based

Fig. 1. An illustration of a linear subspace obtained by the Flexible Manifold
Embedding (FME).

Fig. 2. An illustration of a nonlinear subspace obtained by the proposed Kernel
Flexible Manifold Embedding (KFME).
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