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a b s t r a c t

Extreme learning machine (ELM) has gained increasing attention for its computation feasibility on
various applications. However, the previous generalization analysis of ELM relies on the independent
and identically distributed (i.i.d) samples. In this paper, we go far beyond this restriction by investigating
the generalization bound of the ELM classification associated with the uniform ergodic Markov chains (u.
e.M.c) samples. The upper bound of the misclassification error is estimated for the ELM classification
showing that the satisfactory learning rate can be achieved even for the dependent samples. Empirical
evaluations on real-word datasets are provided to compare the predictive performance of ELM with
independent and Markov sampling.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Extreme learning machine (ELM) can be considered as a single-
hidden layer feedforward neural networks (FNNs), where the out-
put weights can be adjusted while the input weights and the
threshold of hidden layer are fixed randomly [6,9]. This idea of
training FNNs is different from the traditional neural network
theories and is related with the discussions in [13,14]. Because only
the Moore–Penrose generalized inverse is necessary to be calcu-
lated, the original ELM and its variations have shown the computa-
tion feasibility in the various applications, see, e.g., [2,4,5,11,23].
With the rapid development of the ELM-based applications, there
are some theoretical works for its universal consistency in [25] and
generalization ability in [10,19,2]. In particular, the generalization
bounds of ELM are established in [10], which demonstrate that ELM
can achieve the same learning rates as FNNs under mild conditions.
Moreover, analysis of the generalization ability is extended to the
magnitude-preserving regularization ranking in [2]. Although these
works enrich our understanding of ELM, they just consider the
setting where the samples are drawn independently from an
unknown distribution. In the real-world applications, the indepen-
dence of samples is difficult to be verified and does not hold true

usually [20,16,26,28]. Therefore, it is important to further investi-
gate the generalization ability of ELM with dependent samples.

Recently, the Markov chain samples have attracted increasing
attention in statistical learning theory. In [17], the learning rate is
estimated for the online algorithm with the Markov chains. For the
uniformly ergodic Markov chains (u.e.M.c), the generalization bounds
are established for the regularized regression in [27] and support
vector machines classification in [21,22]. Despite the rapid theoretical
progresses, there is no any generalization analysis for the regularized
ELM with dependent samples. To fill the theoretical gap, in this
paper, we investigate the generalization ability of the ELM classifica-
tion with the Markov samples. The derived results on theory and
experiments demonstrate that the satisfying generalization perfor-
mance can be reached by the ELM with Markov sampling.

The rest of this paper is organized as follows. ELM and some
necessary definitions are introduced in Section 2. The main result
on generalization analysis is presented for the ELM-based classi-
fication in Section 3. Some empirical examples are reported in
Section 4. Finally, we conclude this paper in Section 5.

2. Preliminaries

Let XARd be the input space and Y ¼ f�1;1g. The training
samples z¼ fzigmi ¼ 1 ¼ fðxi; yiÞgmi ¼ 1AZm are drawn from a probabil-
ity distribution ρ on Z ¼ X � Y . Given z, the main goal of the cla-
ssification algorithm is searching a predictor f z : X-Y such that
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the misclassification rate is as low as possible. In learning theory,
the misclassification risk is defined as

Rðf Þ ¼
Z
Z
Ifya f ðxÞg dρ

and the Bayes risk is denoted by

Rn ¼min
Z
Z
Ifya f ðxÞg dρ:

For the regression function f ρ ¼
R
Yy dρðy∣xÞ, we know that Rn ¼

Rðf cÞ, where f c ¼ signðf ρÞ, and signftg ¼ 1 if tZ0 and signftg ¼ �1
otherwise. The performance of a classifier is measured by the
excess risk Rðf Þ�Rðf cÞ. Since the indictor loss I is nonconvex and
noncontinuous, we usually use the convex loss to replace it. In
original ELM, the least square loss ℓðf ; zÞ ¼ ðy� f ðxÞÞ2 is used.

Denote α¼ ðα1;α2;…;αnÞT ARn�l in which αi is generated
independently and identically according to a uniform distribution
μ on ½0;1�l. In ELM, the hypothesis space is defined as

Mn ¼ f nðx;α;βÞ ¼
Xn
i ¼ 1

βiϕðαi; xÞ : xAX;β¼ ðβ1;…;βnÞT ARn

( )
;

ð1Þ
where ϕ : Rl � Rd-R is an activation function. The activation
functions include the sigmoid function, Gaussian function, hyper-
bolic tangent function, multiquadric function and Fourier series
[7,8,5].

For f AMn, define

J f J2ℓ2
¼ inf

Xn
i ¼ 1

β2
i : f ¼

Xn
i ¼ 1

βiϕðαi; �Þ
( )

Under the Tikhonov regularization scheme, the regularized
ELM (see [5,6]) can be formulated as

f z;λ ¼ arg min
f AMn

fEzðf ÞþλJ f J2ℓ2 g; ð2Þ

where

Ezðf Þ ¼
1
m

Xm
i ¼ 1

ðyi� f ðxiÞÞ2

is the empirical risk and λ40 is the regularization parameter.
The regularized ELM can be rewritten as the optimization

scheme

βn ¼ arg min
β

1
m
JHβ�Y J22þλJβJ22

� �
;

where Y ¼ ðy1; y2;…; ymÞT and

H ¼

ϕðα1; x1Þ … ϕðαn; x1Þ
…

⋮ … ⋮
…

ϕðα1; xmÞ … ϕðαn; xmÞ

0BBBBBB@

1CCCCCCA
m�n

:

It is easy to verify that

βn ¼ ðHTHþλmIÞ�1HTY :

The expected convex risk, associated with the least square loss,
is defined as

Eðf Þ ¼
Z
Z
ðy� f ðxÞÞÞ2 dρðx; yÞ:

Let L2ρX
be the Hilbert space consisted all square integrable fun-

ctions on X, with norm J � Jρ. For every f AL2ρX
, we have Eðf Þ�

Eðf ρÞ ¼ J f � f ρ J2ρ. From [24], we know

Rðf Þ�Rðf cÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðf Þ�Eðf ρÞ

q
¼ J f � f ρ Jρ:

This paper focuses on bounding the excess risk Eðf Þ�Eðf ρÞ to
measure the generalization ability of ELM. The current analysis is
based on the u.e.M.c samples different from the previous works in
[10,19].

Now we recall some preliminary definition and properties of
the u.e.M.c [12,18,22]. Let ðZ;SÞ be a measurable space. We call
fZtgtZ1 is a Markov chain, if the sequence fZtgtZ1 is randomly
generated and its transition probability measure satisfies

PkðA∣ZiÞ ¼ ProbfZkþ iAA∣Zj; jo i; Zi ¼ zig: ð3Þ
Starting from the initial state zi at time i, the probability, that the
state zkþ i will belong to set A after k-steps, is denoted by PkðA∣ZiÞ.
Hence, if k¼1, we have P1ðA∣ZiÞ ¼ ProbfZiþ1AA∣Zj; jo i; Zi ¼ zig,
which is independent of the values of Zjðjo iÞ. For the given
probabilities p1 and p2, the total variance distance is defined as
Jp1�p2 JTV ¼ supAAS ∣p1ðAÞ�p2ðAÞ∣. The definition of u.e.M.c can
be described as below (see [20]).

Definition 1. A Markov chain fZtgtZ1 is said to be uniformly
ergodic if

JPkð�∣zÞ�πð�ÞJTV rγτk; ð4Þ
for some 0oγo1 and 0oτo1. Here kZ1, kAN and πð�Þ is the
stationary distribution of fZtgtZ1.

From [12], we know that the transition probability PkðA∣ZiÞ of
the u.e.M.c satisfies the Doeblin condition as below.

Proposition 1. Let fZtgtZ1 be a Markov chain with the transition
probability measure Pkð�∣�Þ and let μ be a specific nonnegative measure
with nonzero mass μ0. Assume that, for some integer t and all measurable
sets A, PtðA∣zÞrμðAÞ; 8zAZ. Then, we have

JPkð�∣zÞ�Pkð�∣z0ÞJTV r2ð1�μ0Þk=t ; 8kAN; z; z0AZ: ð5Þ

3. Generalization bound

To evaluate the generalization ability of ELM, we should est-
imate the approximation between f z;λ and f ρ. That is to say, we
should estimate the excess convex risk Eðf z;λÞ�Eðf ρÞ.
Proposition 2. For any zAZm and f z;λ defined in (2), there holds

Eðf z;λÞ�Eðf ρÞrS1þS2; ð6Þ
where

S1 ¼ Eðf z;λÞ�Eðf ρÞ�ðEzðf z;λÞ�Ezðf ρÞÞ

and

S2 ¼ Ezðf z;λÞ�Ezðf ρÞþλJ f z;λ J
2
ℓ2
:

Definition 2. For a subset G of a metric space and any ϵ40, the
covering number N ðG; ϵÞ is defined to be the smallest integer lAN

such that there exist l disks with radius ϵ and centers in G covering
G.

For any given R40, we define a class of functions:

BR ¼ ff AMn : J f J2ℓ2
rR2g:

The covering number of BR is estimated in [3].

Lemma 1. For any R40, ϵ40, there holds

logN ðBR; ϵÞrn � log 4R
ϵ

� �
: ð7Þ

Denote JΓ J ¼
ffiffiffi
2

p
=ð1�ð1�μ0Þ1=2tÞ, where μ0 and t are defined

in Proposition 1. In fact, JΓ J measures the “L2-dependence” of the
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