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a b s t r a c t

In this paper, by using the contraction mapping theorem and Gronwall's Inequality on time scales, we
establish some sufficient conditions on the existence and exponential stability of periodic solutions for a
class of stochastic neural networks on time scales. Moreover, we present an example to illustrate the
feasibility of our results and to show that the continuous-time neural network and its discrete-time
analogue have the same dynamical behaviors.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cellular neural networks have been successfully applied in
different areas such as signal and image processing, pattern
recognition, and optimization. In the study of cellular neural
networks, Hopfield neural networks (HNNs) are an important type
of neural networks. The existence and stability of equilibrium
points, periodic solutions or almost periodic solutions for HNNs
have been studied by many scholars (see [1–6] and references
cited therein). For example, in [6], based on Lyapunov functionals,
authors obtained sufficient conditions on the stability of Hopfield
neural networks on time scales. In papers [7–9], by using the
continuation theorem of coincidence degree theory and construct-
ing suitable Lyapunov functionals or utilizing the boundedness of
the solutions, authors studied the existence and exponential
stability of periodic or anti-periodic solutions of higher-order
Hopfield neural networks on time scales. In [10], by using
Mawhins's continuation of coincidence degree theory and con-
structing suitable Lyapunov functionals, the author investigated
the periodicity and exponential stability for a class of BAM higher-
order Hopfield neural networks on time scales. However, none of
the above results considered stochastic effects on the dynamical
behavior of neural networks.

As pointed out by Haykin [11] that in real nervous systems
synaptic transmission is noisy process brought on by random
fluctuations from the release of neurotransmitters and other prob-
abilistic causes. The neural networks could be stabilized or destabi-
lized by some stochastic inputs [12]. Therefore, it is significant to
consider stochastic effects on the dynamical behavior of neural
networks. And the corresponding neural networks with noise
disturbances are called stochastic neural networks. There are many
works on the stability and on the synchronization of stochastic
neural networks. For example, in [12–18], scholars studied the
stability of different classes of stochastic neural networks and in
[19,20], scholars studied the synchronization of two classes of
stochastic neural networks, respectively. Authors of [21,22] studied
the existence and exponential stability of periodic solutions for
impulsive stochastic neural networks. Authors of [23] obtained some
sufficient conditions ensuring the existence and stability of almost
periodic solutions for a stochastic neural network.

Note that most results are on the stochastic neural networks
which act in continuous-time manner. When it comes to implemen-
tation of continuous-time networks for the sake of computer-based
simulation, experimentation or computation, it is usual to discretize
the continuous-time networks. Hence, in implementation and appli-
cations of neural networks, discrete-time neural networks become
more important than their continuous-time counterpart and more
suitable to model digitally transmitted signals in a dynamical way.
For example, in paper [17], authors considered the exponential
stability of discrete-time delayed Hopfield neural networks with
stochastic perturbations and impulses. But it is troublesome to study
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the dynamical properties for continuous and discrete systems,
respectively. So it is significant to study dynamical systems on time
scales (see [6,8–10,24–32] and references cited therein), which helps
avoid proving results twice, once for differential equations and once
for difference equations.

Recently, some authors studied stochastic differential equations
on time scales. For example, authors of [33] studied stochastic
processes indexed by a time scale; authors of [34] introduced the
Kalman filter for linear stochastic systems on time scales; authors
of [35] studied the existence and uniqueness of solutions for
random dynamic systems on time scales; authors of [36] intro-
duced the construction of the stochastic integral and the concept
of stochastic dynamic equations on time scales. For other results
on stochastic dynamic equations on time scales, readers may refer
to [37,38].

However, to the best of our knowledge, there is no paper
published on the existence and stability of periodic solutions for
stochastic neural networks on time scales. Motivated by the above
discussion, in this paper, we consider the following stochastic
neural networks on time scales

ΔxiðtÞ ¼ �aiðtÞxiðtÞþ
Xn
j ¼ 1

bijðtÞf jðxjðtÞÞþ
Xn
j ¼ 1

cijðtÞgjðxjðt�τijðtÞÞÞþ IiðtÞ
2
4

3
5 Δt

þ
Xn
j ¼ 1

δijðxjðtÞÞ ΔwjðtÞ; tAT; i¼ 1;2;…;n; ð1:1Þ

where T is a periodic time scale, n is the number of neurons in layers,
xi(t) denotes the activation of the ith neuron at time t; ai represents
the rate with which the ith neuron will reset its potential to the
resting state in isolation when they are disconnected from the
network and the external inputs at time t; f j, gj are the input–output
functions (the activation functions); τij : T-½0; þ1Þ \ T and satisfy
t�τijðtÞAT; bij; cij are elements of feedback templates at time t; Ii
denotes the input of the ith neuron at time t, i¼ 1;2;…;n;
wðtÞ ¼ ðw1ðtÞ;…;wnðtÞÞT ðtATÞ is the n-dimensional Brownian
motion defined on complete probability space ðΩ;F ;PÞ; here, we
denote by F the associated σ-algebra generated by fwðtÞg with the
probability measure P; δij are Borel measurable functions, A¼ ðδijÞn�n

is the diffusion coefficient matrix.

Remark 1.1. If T¼R, then (1.1) reduces to

dxiðtÞ ¼ �aiðtÞxiðtÞþ
Xn
j ¼ 1

bijðtÞf jðxjðtÞÞþ
Xn
j ¼ 1

cijðtÞgjðxjðt�τijðtÞÞÞþ IiðtÞ
2
4

3
5 dt

þ
Xn
j ¼ 1

δijðxjðtÞÞ dwjðtÞ; tAR; i¼ 1; 2;…;n:

In [22], by establishing new integral inequalities and using the
properties of spectral radius of nonnegative matrices, authors
obtained some sufficient conditions for the existence and global
p-exponential stability of periodic solutions for the above system
with impulses effects. If T¼Z, then (1.1) reduces to

xiðtþ1Þ�xiðtÞ ¼ �aiðtÞxiðtÞþ
Xn
j ¼ 1

bijðtÞf jðxjðtÞÞ

þ
Xn
j ¼ 1

cijðtÞgjðxjðt�τijðtÞÞÞþ IiðtÞ

þ
Xn
j ¼ 1

δijðxjðtÞÞwjðtÞ; tAZ; i¼ 1;2;…;n:

In [39], based on Lyapunov stability theory and stochastic
approaches, authors derived criteria ensuring the robust exponen-
tial stability in the mean square for the above system.

Our main purpose of this paper is by using the contraction
mapping theorem to establish some sufficient conditions on the
existence of periodic solutions for (1.1). Besides, by using Gron-
wall's Inequality on time scales, we also explore the exponential
stability of periodic solutions of (1.1). Our results are new even in
both cases of T¼R or Z.

Denote by BCb
F 0
ðT;RnÞ the family of bounded F 0-measurable,

Rn-valued random variables x(t), that is, the value of x(t) is an n-
dimensional real vector and can be decided from the values of w(s)
for sr0. For convenience, we denote ½a; b�T ¼ ft j tA ½a;b� \ Tg. For
an ω-periodic rd-continuous function f : R-R, denote
f ¼ suptA ½0;ω�T j f ðtÞj ; f ¼ inf tA ½0;ω�T j f ðtÞj . The initial condition of
(1.1) is

xiðsÞ ¼ φiðsÞ; ð1:2Þ
where φiABCb

F0
ð½�τ0;0�T;RÞ, i¼ 1;2;…;n, τ0 ¼max1r i;jrnsuptA

½0;ω�TτijðtÞ.
Throughout this paper, we assume that the following condi-

tions hold:

ðH1Þ aiðtÞ40 with �aiAR, bijðtÞ; cijðtÞ; IiðtÞ; JjðtÞ; τijðtÞ are all peri-
odic rd-continuous functions with period ω for tAT, whereR
denotes the set of regressive functions on T, i¼ 1;2;…;n;

ðH2Þ f j; gj; δij are Lipschitz-continuous with Lipschitz constants
Lfj 40, Lgi 40, lij40, respectively, i; j¼ 1;2;…;n.

This paper is organized as follows: In Section 2, we introduce
some definitions and state some preliminary results which are
needed in later sections. In Section 3, we establish some sufficient
conditions for the existence of periodic solutions of (1.1). In Section
4, we prove that the periodic solution obtained in Section 3 is
exponentially stable. In Section 5, we give an example to illustrate
our results obtained in previous sections.

2. Preliminaries

In this section, we introduce some definitions and state some
preliminary results.

At first, we recall some basic definitions and results on time
scales.

Definition 2.1 (Hilger [40]). Let T be a nonempty closed subset
(time scale) of R. The forward and backward jump operators σ,
ρ : T-T and the graininess μ : T-½0;1Þ are defined, respectively,
by

σðtÞ ¼ inffsAT : s4tg; ρðtÞ ¼ supfsAT : sotg and μðtÞ ¼ σðtÞ� t:

Definition 2.2 (Bohner and Peterson [41]). We say that a time scale
T is periodic if there exists p40 such that if tAT, then t7pAT.
For TaR, the smallest positive p is called the period of the
time scale.

Definition 2.3 (Bohner and Peterson [41]). Let TaR be a periodic
time scale with period p. We say that the function f : T-R is
periodic with period ω if there exists a natural number n such that
ω¼ np, f ðtþωÞ ¼ f ðtÞ for all tAT and ω is the smallest positive
number such that f ðtþωÞ ¼ f ðtÞ.

Definition 2.4 (Bohner and Peterson [41]). A point tAT is called
left-dense if t4 infT and ρðtÞ ¼ t, left-scattered if ρðtÞot, right-
dense if tosupT and σðtÞ ¼ t, and right-scattered if σðtÞ4t. If T
has a left-scattered maximum m, then Tk ¼T n fmg; otherwise
Tk ¼T. If T has a right-scattered minimum m, then Tk ¼T n fmg;
otherwise Tk ¼T.
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