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a b s t r a c t

To deal with equalities-constrained nonconvex optimization problem, an intelligence method of swarm
neural networks (SNN) is introduced in this paper. The proposed method handles the problem into two
parts, which combines local searching ability of one-layer recurrent neural network (RNN) and global
searching ability of shuffled frog leaping algorithm (SFLA). First, a RNN model based on general
nonconvex optimization is presented. Then the convergence property of RNN is analyzed and proven.
Moreover, based on SFLA framework, neural networks are treated as frogs which must be divided into
several memeplexes and evolve by their own differential equations to search a local exact solution. Next,
through shuffling the best solution of each memeplex, we can obtain the global best point. Finally,
numerical examples with simulation results are given to illustrate the effectiveness and good
characteristics of the proposed method solving nonconvex optimization problem.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Equalities-constrained optimization has many applications in
engineering and scientific problems [1–4], such as signal processing,
subcarrier allocation in wireless communication, signal transmission,
channel or power allocation. Among them, due to the real-time and
hardware implementations [5], RNN is one of the effective means to
obtain the optimal solution. Hopfield neural networks were firstly
proposed for linear programming by Tank and Hopfield [6]. And
then, Kennedy and Chua [7] presented a RNN for nonlinear optimi-
zation which employed both gradient method and penalty function
method to approximate optimal solutions. Because of the pioneering
work [8–12], more and more researchers are inspired to develop
neural networks for solving optimization problem. In [13], a RNN is
presented which performed quadratic optimization subject to bound
constraints on each of the optimization variables. Wang [14] utilized
a discrete neural network which was capable of determining the
shortest paths of a given directed network. Liu [15] studied a one-
layer recurrent neural network with a discontinuous activation
function which was proposed for linear programming. Xia [16,17]
widely investigated several classes of RNN to solve convex optimiza-
tion subject to nonlinear inequality constraints. Then Hu and Zhang
[18] applied RNN to solve k-Winners-Take-All Problem. Especially, He

[19,20] constructed a new neural network model for solving bilevel
programming problem. As projection operator is introduced in
recurrent neural network [22–24,33–35], it brings more simpler
structure of the recurrent neural network. Ref. [25] solves generally
constrained generalized linear variational inequalities using the
general projection neural networks. Ref. [26] proposes a projection
neural network solving nonlinear convex programming problem
without requiring the Lipschitz continuity condition of objective
function.

In this paper, it is concerned with nonconvex optimization
problem. We exploit penalty method and projection technology to
design a novel recurrent neural network model. Because of massive
local optimal solutions, the new RNN model is short of ability to
guarantee the global best point [27]. Motivated by shortage of RNN
mentioned above, we creatively investigate using numerous RNNs
in SFLA's framework which is named SNN. SNN can solve the
complex nonconvex problem which [17,18,20,21,26] cannot be
handled by the existing methods. SFLA belongs to the Memetic
algorithm (MA) family. It is a meta-heuristic optimization method
inspired from the memetic evolution of a group of frogs when
seeking for food. In this algorithm, the evolution of memes is driven
by the exchange of information among interactive individuals. SFLA
combines the advantages of the genetic-based MA and the social
behavior-based Particle Swarm Optimization (PSO). It has been
tested on several optimization problems and found to be effective
in searching the global solutions [28–30]; owing to associate with
RNNs, SLFA's local searching ability will have a huge improvement.
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The main contribution of the paper is: (i) to establish a new
recurrent neural network to solve the optimization model with
equality constraints and then its convergence has been proven; (ii)
to improve the performance of SFLA algorithm through combining
with RNNS and (iii) to put forward the idea to solve non-convex
optimization problem using swarm neural networks.

The rest of this paper is organized as follows. In Section 2, the
one-layer recurrent neural network is described. In Section 3,
analysis of the recurrent neural network's convergence is given. In
Section 4, swarm neural network optimization is elaborated in
detail. In Section 5, three illustrative examples are discussed.
Conclusions are found in Section 6.

2. Problem formulation and model description

This section provides the necessary mathematical background
which is used to describe nonconvex program problem and then
constructs a recurrent neural network model to solve it. Consider
an equalities-constrained optimization problem given by

minimize f ðxÞ
s:t: hiðxÞ ¼ 0

xAΩ; i¼ 1;…;m: ð1Þ
where x¼ ðx1; x2…xnÞT ARn is the decision variable, f : Rn-R is a
minimized objective function, hi : R

n-R; i¼ 1;…;m, are equality
constraints. Ω¼ fxARn∣urxrvg is a box set in Rn which is a
nonempty and closed convex set.

Definition 1. Let I ¼ fijhiðxÞ ¼ 0g; xnARn, be the global optimal
solution if existing xn satisfies f ðxnÞr f ðxÞ, for all xAΩ \ I. In this
paper, we assume that Ω \ I is nonempty.

Next, for the sake of elaborating the following work, we also
consider the variational inequality problem VIðU;Ω0Þ which is
related to nonlinear program:

Uð �xÞT ðx� �xÞZ0; 8xAΩ ð2Þ
where U(x) is always the gradient of objective function on convex
set Ω, �x is a KKT point which is equivalent to the following
conditions [36, p. 2, Example 1]:

(1) if uo �xov, then f ð �xÞ¼0;
(2) if �x ¼ u, then f ð �xÞZ0;
(3) if �x ¼ v, then f ð �xÞr0;

Lemma 1 (Xia et al. [23]). �x is a solution to VIðU;ΩÞ if and only if �x
satisfies

PΩð �x�αUð �xÞÞ ¼ �x: ð3Þ

In Eq. (3) α is any positive constant, and PΩ : Rn-Ω is a
projection operator which enforces vector ξ inΩ and is defined by

PΩðξÞ ¼ arg min
ηAΩ

Jξ�ηJ : ð4Þ

Under previous work, the way to compute projection of a point
onto a box set is defined as follows:

PΩðξiÞ ¼
vi; ξirvi
ξi; virξirui:

ui; ξiZui

8><
>: ð5Þ

Moreover, Ω can also be used to express a ball constrain, i.e.

Ω¼ fξ : Jξ�cJrρg

with cARn and ρ40. Then, the form can be changed as follows:

PΩðξÞ ¼
ξ; Jξ�cJrρ

cþρðξ�cÞ
Jξ�cJ

; Jξ�cJ4ρ:

8><
>: ð6Þ

Remark 1. Generally, a problem which is regarded as nonconvex
program must satisfy one of the following conditions. Firstly, either
the objective function or its constraints should be nonconvex.
Secondly, both objective function and its constraints are nonconvex.
Unlike convex program, nonconvex program always can obtain
many local optimal solutions, but not all of them are the global best.

Recently, projection operator is an effective and simple method for
dealing with the constraints, which has been used in neural networks for
solving some kinds of constrained optimization problems. Different from
somemost recent neural networkmodels based on penaltymethod only,
we introduce the following system modeled by a nonautonomous
differential equation with projection operator to solve (1)

_xðtÞ ¼ �xðtÞþPΩfxðtÞ�αU½xðtÞ�g: ð7Þ
If f(x) and h(x) are continuous and differentiable, we could replace U½xðtÞ�
with ∇f ðxÞþ2c∇hðxÞhðxÞ, where ∇f ðxÞ is the gradient of f(x), ∇hðxÞ is
the gradient of h(x) and ∇hðxÞ ¼ ð∇h1ðxÞ;…;∇hmðxÞÞ, and cARn, is the
coefficient of ∇hðxÞ. Let α ¼ 1, so Eq. (7) can be changed to

_xðtÞ ¼ �xðtÞþPΩfxðtÞ�∇f ½xðtÞ��2c∇h½xðtÞ�h½xðtÞ�g: ð8Þ
Obviously, the model (8) is a RNN which only has one-layer structure

and each decision variable corresponds to one neuron. The relationship
betweenmodel's equilibria and the KKT points will be shown in the next
section. Meanwhile, the convergence of the model will be demonstrated.

3. Theoretical analysis

Lemma 2 (Xia and Wang [31]). If there exists a point ðxn; yn; znÞ such
that for all xARn, and all ðz; yÞARrþm with zZ0

Lðxn; z; yÞrLðxn; zn; ynÞrLðx; zn; ynÞ: ð9Þ

Then xn is an optimal solution to nonlinear program, where
Lðx; z; yÞ ¼ f ðxÞþzTgðxÞþyThðxÞ is referred to as a Lagrange function.

Where there are only equality constraints, it follows that ðxn; ynÞ
satisfies the Karush–Kuhn–Tucker conditions below

∇f ðxÞþ∇hðxÞy¼ 0; hðxÞ ¼ 0: ð10Þ
For convex program, the Karush–Kuhn–Tucker condition (10) is the

sufficient and necessary condition to optimal solution. The previous work
has given the proof that if problem (1) is convex, dynamic system (8) can
globally converge to the exact optimal solution to problem (1). But for
nonconvex program, (10) is just a necessary condition. However, when
objective f(x) is nonconvex on Ω, global property cannot be guaranteed.

For the equality constraints hi ¼ 0, i¼ 1;…m, the penalty
method is introduced into the network for solving (1). The penalty
function used in this paper can be given in any expression, which
satisfies the following condition:

� P(x)¼0 for xAQ ¼ fxjhiðxÞ ¼ 0; i¼ 1;…;mg, and PðxÞ40 for x is
not in Q.

� P(x) is convex on Ω.

So the problem (1) can be transformed into a unconstrained form:

f ¼ f ðxÞþc
Xm
i ¼ 1

hiðxÞ
� �2

; ð11Þ

where we let PðxÞ ¼ c
Pm

i ¼ 1 hiðxÞ
� �2.
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