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a b s t r a c t

Constructive and destructive parsimonious extreme learning machines (CP-ELM and DP-ELM) were
recently proposed to sparsify ELM. In comparison with CP-ELM, DP-ELM owns the advantage in the
number of hidden nodes, but it loses the edge with respect to the training time. Hence, in this paper an
equivalent measure is proposed to accelerate DP-ELM (ADP-ELM). As a result, ADP-ELM not only keeps
the same hidden nodes as DP-ELM but also needs less training time than CP-ELM, which is especially
important for the training time sensitive scenarios. The similar idea is extended to regularized ELM
(RELM), yielding ADP-RELM. ADP-RELM accelerates the training process of DP-RELM further, and it
works better than CP-RELM in terms of the number of hidden nodes and the training time. In addition,
the computational complexity of the proposed accelerating scheme is analyzed in theory. From reported
results on ten benchmark data sets, the effectiveness and usefulness of the proposed accelerating
scheme in this paper is confirmed experimentally.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The widespread popularity of single-hidden layer feedforward
networks (SLFNs) in extensive fields is mainly due to their power-
fulness of approximating complex nonlinear mappings and simple
forms. As a specific type of SLFNs, extreme learning machine (ELM)
[1–3] recently has drawn a lot of interests from researchers and
engineers. Generally, training an ELM consists of two main stages [4]:
(1) random feature mapping and (2) linear parameters solving. In the
first stage, ELM randomly initializes the hidden layer to map the
input samples into a so-called ELM feature space with some non-
linear mapping functions, which can be any nonlinear piecewise
continuous functions, such as the sigmoid and the RBF. Since in ELM
the hidden node parameters are randomly generated (independent
of the training samples) without tuning according to any continuous
probability distribution instead of being explicitly trained, it owns the
remarkable computational priority to regular gradient-descent back-
propagation [5,6]. That is, unlike conventional learning methods that
must see the training samples before generating the hidden node
parameters, ELM can generate the hidden node parameters before
seeing the training samples. In the second stage, the linear para-
meters can be obtained by solving the Moore-Penrose generalized

inverse of hidden layer output matrix, which reaches both the
smallest training error and the smallest norm of output weights
[7]. Hence, different from most algorithms proposed for feedforward
neural networks not considering the generalization performance
when they were proposed first time, ELM can achieve better gene-
ralization performance.

From the interpolation perspective, Huang et al. [3] indicated that
for any given training set, there exists an ELM network which gives
sufficient small training error in squared error sense with probability
one, and the number of hidden nodes is not larger than the number
of distinct training samples. If the number of hidden nodes amounts
to the number of distinct training samples, then training errors
decreases to zero with probability one. Actually, in the implementa-
tion of ELM, it is found that the generalization performance of ELM is
not sensitive to the number of hidden nodes and good performance
can be reached as long as the number of hidden nodes is large
enough [8]. In addition, unlike traditional SLFNs, such as radial basis
function neural networks and multilayer perceptronwith one hidden
layer, where the activation functions are required to be continuous or
differentiable, ELM can choose the threshold function and many
others as activation functions without sacrificing the universal
approximation capability at all. In statistical learning theory, Vap-
nik–Chervonenkis (VC) dimension theory is one of the most widely
used frameworks in generalization bound analysis. According to the
structure risk minimization perspective, to obtain better general-
ization performance on testing set, an algorithm should not only
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achieve low training error on training set, but also should have a
lower VC dimension. Aiming to classification tasks, Liu et al. [9]
proved that the VC dimension of an ELM is equal to its number of
hidden nodes with probability one, which states that ELM has a
relatively low VC dimension. With respect to regression problems,
the generalization ability of ELM had been comprehensively studied
in [10] and [11], leading to the conclusion that ELM with some
suitable activation functions, such as polynomials, sigmoid and

Nadaraya–Watson function, can achieve the same optimal general-
ization bound as a SLFN in which all parameters are tunable. From
the above analyses, it is known that ELM owns excellent universal
approximation capability and generalization performance. However,
due to the fact that ELM generates hidden nodes randomly, it usually
requires more hidden nodes than traditional SLFN to get matched
performance. Large network size always signifies more running
time in the testing phase. In cost sensitive learning, the testing time
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Table 2
The computational complexity of DP-ELM/DP-RELM at the ith iteration.
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Table 3
Specifications on each benchmark data set.

Data sets Hidden node type #Hidden nodes log 2 μð Þ #Training #Testing #Inputs #Outputs

Energy efficiency Sigmoid 190 �15 450 318 8 2
RBF 220 �20 450 318 8 2

0.5
Sml2010 Sigmoid 80 �2 3000 1137 16 2

RBF 90 �8 3000 1137 16 2
0.5
Parkinsons Sigmoid 100 �10 4000 1875 16 2

RBF 70 �13 4000 1875 16 2
0.5
Airfoil Sigmoid 100 �17 800 703 5 1

RBF 90 �30 800 703 5 1
0.5
Abalone Sigmoid 40 �11 2800 1377 8 1

RBF 60 �10 2800 1377 8 1
0.5
Winequality white Sigmoid 90 �8 3000 961 11 1

RBF 70 �11 3000 961 11 1
0.5
CCPP Sigmoid 220 �34 6000 3527 4 1

RBF 230 �35 6000 3527 4 1
0.5
Ailerons Sigmoid 120 �1 7154 6596 40 1

RBF 100 �10 7154 6596 40 1
0.5
Elevators Sigmoid 60 �4 8752 7847 18 1

RBF 50 �11 8752 7847 18 1
0.5
Pole Sigmoid 300 �6 10000 4958 26 1

RBF 300 �27 10000 4958 26 1

Notes: #Training represents the number of training samples, #Testing represents the number of testing samples, #Inputs represents the number of input variables, and
#Outputs represents the number of output variables.
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