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a b s t r a c t

In this paper, further results on robustness analysis of global exponential stability of recurrent neural net-
works (RNNs) subjected to time delays and randomdisturbances are provided. Novel exponential stability
criteria for the RNNs are derived, and upper bounds of the time delay and noise intensity are character-
ized by solving transcendental equations containing adjustable parameters. Through the selection of the
adjustable parameters, the upper bounds are improved. It shows that our results generalize and improve
the corresponding results of recent works. In addition, some numerical examples are given to show the
effectiveness of the results we obtained.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recurrent neural networks RNNs are nonlinear dynamic sys-
tems with some resemblance of biological neural networks in the
brain, which include the well-known Hopfield neural networks,
cellular neural networks as special cases. In recent decades, many
RNNs have been developed and extensively applied to many areas,
such as associative memories, image processing, pattern recogni-
tion, classification and prediction, signal processing, robotics and
control.

The stability of recurrent neural network is necessary for most
successful neural network applications. The stability of RNNs de-
pends mainly on their parametrical configuration. In biological
neural systems, signal transmission via synapses is usually a noisy
process influenced by random fluctuations from the release of neu-
rotransmitters and other disturbances (Haykin, 1994). Moreover,
in the implementation of RNNs, external random disturbances and
time delays of signal transmission are common and hardly been
avoided. It is known that random disturbances and time delays
in the neuron activations may result in oscillation or instability
of RNNs (Gopalsamy & Leung, 1996; Pham, Pakdaman, & Virbert,
1998). The stability analysis of delayed RNNs (DRNNs) and stochas-
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tic RNNs (SRNNs) with external random disturbances have been
widely investigated in recent years (see, e.g., Arik, 2002, 2004, Cao,
Yuan, & Li, 2006, Chua & Yang, 1988, Faydasicok & Arik, 2013, He,
Wu, & She, 2006, Hu, Gao, & Zheng, 2008, Liao, Chen, & Sanchez,
2002, Liao & Wang, 2003, Liu, Wang, & Liu, 2006, Wang, Liu, Li, &
Liu, 2006, Xu, Lam, & Ho, 2006, Yuan, Cao, & Li, 2006, Zeng &Wang,
2006a, 2006b, Zhang& Jin, 2000, Zhang,Wang, & Liu, 2009 and Zhu,
Shen, & Chen, 2010a, 2010b and the references cited therein).

It is well known that noise and time delays can lead to instabil-
ity and they can destabilize stable RNNs if they exceed their limits.
The instability depends on the intensity of the noise and time de-
lays (Mao, 2007). For a stable RNN, if the noise intensity is low and
time delay is small, the perturbed RNN may still be stable. There-
fore, it is interesting to determine how much time delay and ran-
dom disturbance that a stable RNN can withstand without losing
its global exponential stability. Although various stability proper-
ties of RNNs have been analyzed extensively in recent years by us-
ing the Lyapunov and the linear matrix inequality (LMI) methods
(Chen & Lu, 2008; Huang, Ho, & Lam, 2005; Zhang & Wang, 2008;
Zheng, Shan, Zhang, & Wang, 2013), the robustness of the global
stability of RNNs is rarely investigated directly by estimating the
upper bounds of noise level and time delays.

Motivated by the above discussions, our purpose is to quan-
tify the parameter uncertainty level for stable RNNs in this paper.
Comparedwith the conventional Lyapunov stability theory and lin-
ear matrix inequality methods, we investigate the robust stability
for global exponential stability directly from the coefficients of the
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RNNswhich should satisfied the global exponential stability condi-
tion. In this paper, we further characterize the robustness of RNNs
with time delays and additive noise by deriving the upper bounds
of delays and noise for global exponential stability. Novel exponen-
tial stability criteria for the RNNs are derived, and upper bounds
of the time delay and noise intensity are estimated by solving
transcendental equations containing adjustable parameters. We
generalize and improve previous results by choosing adjustable
parameters. Moreover, we prove theoretically that, for any glob-
ally exponentially stable RNNs, if additive noise and time delays
are smaller than the derived upper bounds herein, then the per-
turbed RNNs are guaranteed to be globally exponentially stable.

2. Problem formulation

Throughout this paper, unless otherwise specified, Rn and Rn×m

denote, respectively, the n-dimensional Euclidean space and the
set of n × m real matrices. Let (Ω,F , {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e., the filtration contains all P-null sets and is right
continuous). ω(t) be a scalar Brownian motion defined on the
probability space. If A is a matrix, its operator norm is denoted
by ∥A∥ = sup{|Ax| : |x| = 1}, where | · | is the Euclidean
norm. Denote L2F0

([−τ̄ , 0]; Rn) as the family of all F0− measur-
able C([−τ̄ , 0]; Rn) valued random variables ψ = {ψ(θ) : −τ̄ ≤

θ ≤ 0} such that sup−τ̄≤θ≤0 E|ψ(θ)|2 < ∞ where E{} stands for
the mathematical expectation operator with respect to the given
probability measure P .

Consider an RNN model

ż(t) = −Az(t)+ Bg(z(t))+ u,
z(t0) = z0, (1)

where z(t) = (z1(t), . . . , zn(t))T ∈ Rn is the state vector of the
neurons, t0 ∈ R+ and z0 ∈ Rn are the initial values, A = diag{a1,
. . . , an} ∈ Rn×n is the self-feedback connection weight matrix, B =

(bkl)n×n ∈ Rn×n is the connection weight matrix, u is the neuron
external input (bias), g(z(t)) = (g1(z1(t)), . . . , gn(zn(t)))T ∈ Rn

is a vector-valued activation function which satisfies the global
Lipschitz condition, i.e.,

|g(u)− g(v)| ≤ k|u − v|, ∀u, v ∈ Rn, (2)

where k is a known constant.
In addition, we assume that RNN (1) has an equilibrium point

z∗
= (z∗

1 , z
∗

2 , . . . , z
∗
n )

T
∈ Rn. Let x(t) = z(t) − z∗, f (x(t)) =

g(x(t)+ z∗)− g(z∗), and then, (1) can be rewritten as

ẋ(t) = −Ax(t)+ Bf (x(t)),
x(t0) = x0, (3)

where x0 = z0 − z∗ i.e., the origin is an equilibrium point of (3).
Hence, the stability of the equilibrium point z∗ of (1) equals to
the stability of origin point in the state space of (3). In addition,
the function f in (3) satisfies the following Lipschitz condition and
f (0) = 0.

Assumption 1. The activation function f (·) satisfies the following
Lipschitz condition; i.e.,

|f (u)− f (v)| ≤ k|u − v|, ∀u, v ∈ Rn, f (0) = 0, (4)

where k is a known constant.

It is known that, based on Assumption 1, RNN (3) has a unique
state x(t; t0, x0) on t ≥ t0 for any initial value t0, x0. The origin is
the equilibrium point of RNN (3), as f (0) = 0. Now we define the
global exponential stability of the state of RNN (3).

Definition 1. The state of RNN (3) is globally exponentially stable,
if for any t0, x0, there exist α > 0 and β > 0 such that

|x(t; t0, x0)| ≤ α|x(t0)| exp(−β(t − t0)), ∀t ≥ t0, (5)

where x(t; t0, x0) is the state of the model in (3).
Numerous criteria for ascertaining the global exponential

stability of RNN (3) have been developed, e.g., Chen (2001), Shen
and Wang (2007, 2008, 2012), Zeng, Wang, and Liao (2005), Zhu
and Shen (2013) and Zhu et al. (2010a, 2010b).

3. Main results

In the following equation, we consider the noise-induced
stochastic RNNs (SRNNs) described by the Itô stochastic equation
dy(t) = [−Ay(t)+ Bf (y(t))]dt + σy(t)dω(t),
y(t0) = x0, (6)
with the initial data y(t0) = x0 ∈ Rn, and A, B, f , in here are the
same in (3), σ is the intensity of noise, ω(t) is a scalar Brownian
motion defined on the probability space (Ω,F , {Ft}t≥0, P). Under
Assumption 1, SRNN (6) has a unique state y(t; t0, x0) on t ≥ t0 for
any initial value t0, x0; the origin point y = 0 is the equilibrium
point. Now, the question is, given globally exponentially stable
RNN (3), how much the noise intensity will not derail the
stability of RNNs? We will characterize how much the stochastic
perturbation can bear such that SRNN (6) continues to remain
globally exponentially stable. For the SRNN model (6), we give the
following definition of global exponential stability.

Definition 2 (Mao, 2007). SRNN (6) is said to be almost surely
globally exponentially stable if for any t0 ∈ R+, x0 ∈ Rn, there
exist α > 0 and β > 0 such that ∀t ≥ t0, |y(t; t0, x0)| ≤

α|y(t0)| exp(−β(t − t0)) holds almost surely, i.e., the Lyapunov
exponent lim supt→∞(ln |y(t; t0, x0)|/t) < 0 almost surely, where
y(t; t0, x0) is the state of SRNN (6). SRNN (6) is said to be
mean square globally exponentially stable if for any t0 ∈ R+,
x0 ∈ Rn, there exist α > 0 and β > 0 such that ∀t ≥ t0,
E|y(t; t0, x0)|2 ≤ α|y(t0)| exp(−β(t − t0)) holds; i.e., the
Lyapunov exponent lim supt→∞(ln(E|y(t; t0, x0)|2)/t) < 0, where
y(t; t0, x0) is the state of SRNN (6).

From the definition, in general, almost surely global exponential
stability andmean square one donot imply each other (Mao, 2007).
However, if Assumption 1 holds, we have the following lemma
(Mao, 2007, Theorem 4.2, p. 128).

Lemma 1. Let Assumption 1 hold. The global exponential stability in
sense of mean square of SRNN (6) implies the almost surely global
exponential stability of SRNN (6).

Theorem 1. Let Assumption 1 hold and RNN (3) be globally exponen-
tially stable. Noise-induced SRNN (6) is mean square globally expo-
nentially stable and also almost surely globally exponentially stable, if
|σ | < σ̄ is a unique positive solution of the transcendental equation

2σ 2α2

(1 − ε)β
exp


4∆


2∆
ε
(∥A∥

2
+ ∥B∥2k2)+

σ 2

1 − ε


+ 2α2 exp(−2β∆) = 1, (7)

where ε is an adjustable parameter, ε ∈ (0, 1) and ∆ > ln(2α2)/
(2β) > 0.
Proof. For simplify, we will denote x(t; t0, x0) and y(t; t0, x0) as
x(t) and y(t), respectively. From (3) and (6), we have

x(t)− y(t) =

 t

t0
[−A(x(s)− y(s))+ B(f (x(s))− f (y(s)))]ds

−

 t

t0
σy(s)dω(s).
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