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a b s t r a c t

We investigate the constrained optimization of excitatory synaptic input patterns to fastest generate
given number of spikes in theta neuron model. Optimal input timings and strengths are identified by
using phase plane arguments for discrete input kicks with a given total magnitude. Furthermore, analyti-
cal results are conducted to estimate the firing time of given number of spikes resulting from a given input
train. We obtain the fastest strategy as the total input size increases. In particular, when the parameter
−b is large and total input size G is not so large, there are two candidate strategies to fastest achieve given
number of spikes, which depend on the considered parameters. The fastest strategy for some cases of
G ≫ −b to firem spikes should partitionm spikes intom−n+1 spikes for the highest band, with largest
g , and one spike for each subsequent n−1 band.WhenG is sufficiently large, big kick is the fastest strategy.
In addition, we establish an optimal value for the dependent variable, θ , where each input should be de-
livered in a non-threshold-based strategy to fastest achieve given output of subsequent spikes. Moreover,
we find that reset and kick strategy is the fastest when G is small and G ≫ −b. The obtained results can
lead to a better understanding of how the period of nonlinear oscillators are affected by different input
timings and strengths.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Notably, understanding how neurons respond to synaptic
inputs has been a potential topic in the field of computational neu-
roscience. Chemical synaptic transmission offers a specific mech-
anism for encoding of the neuronal information that an organ-
ism can sense from the external environment, which is filtered by
the internal state of the organism. Thus, understanding neuronal
input–output transformation is a centrally important scientific
goal (Wang, Costello, & Rubin, 2011). Neurons make use of action
potentials or, more simply, spikes, brief and uniformpulses of elec-
trical activity, to transmit and process information. It iswell known
that an action potential is generatedwhen themembrane potential
of a neuron reaches a threshold value. And then, it travels down the
axon toward synapses terminating at postsynaptic neurons, where
it initiates postsynaptic currents that summate to trigger (or in-
hibit) new action potentials. An action potential sequence, or spike
train may contain information with diverse coding schemes.

∗ Corresponding author. Tel.: +86 10 82332003; fax: +86 10 82332003.
E-mail address: nmqingyun@163.com (Q. Wang).

Previous study of Morris and Hooper (1997) has shown that
slow muscle contraction amplitude should depend on spike num-
ber when burst duration is brief relative to muscle summation
time, and on spike frequency when the duration is long relative
to this time. In this work, difference between spike number and
spike frequency dependence on two slow muscles is clarified in
the lobster stomatogastric system. It is shown that, functionally,
one muscle is spike number dependent, whereas the other is pri-
marily spike frequency dependent. Thus, both of these parameters
can determine slow muscle output. Previous results have shown
that input fluctuations can establish a regime of high spike-time
reliability (Galán, Ermentrout, & Urban, 2008) or high sensitivity of
firing frequency to input current strength (Arsiero, Luscher, Lund-
strom, & Giugliano, 2007; Higgs, Slee, & Spain, 2006). Although the
framework for incorporating synaptic inputs into computational
models is well established, and the computational implications of
such inputs have received significant attention, optimization prob-
lems involving synaptic inputs are not well represented in existing
literatures. In this paper, the optimal way to tailor synaptic inputs
that is subject to a certain constraint is explored to fastest generate
given number of spikes.
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There are several reasons that minimizing time of given num-
bers of spikes may be a biologically relevant goal for normal ac-
tivities of neurons. As neurons operate with the efficient resource
being utilized, it could be helpful if, subject to some constraint on
the amount of input, the synaptic input time course could be tai-
lored to fastest achieve given number of spikes. Certainly, there ex-
ist some brain areas, including areas of somatosensory cortex and
visual cortex, where firing intensity encodes stimulus information
with neurons showing maximal firing under optimally preferred
stimulus conditions (Simons, 1978). Similarly, a sufficiently high
firing rate within a given time window may be needed to over-
come inhibition or to outcompete activity of other neurons to influ-
ence a downstream readout neuron (Abeles, Bergman, Margalit, &
Vaadia, 1993; Pinto, Brumberg, Simons, & Ermentrout, 1996). Input
time courses that needminimal time to yield given number of spik-
ing can depend on the intrinsic properties of a neuron model, and
characterizing optimal input time courses for models can provide
some useful information about neuronal coding function. Interest-
ingly, optimal spikes have been explored in neuronal networks as
some key factors of the neuronal systems are changed (Ozer, Perc,
& Uzuntarla, 2009; Perc, 2009).

Moehlis, Shea-Brown, and Rabitz (2006) used a calculus of vari-
ations approach to determine the input current of minimal ampli-
tude that causes a neuron to spike at a specified target time. That
work considered a phasemodel for a spiking neuron, with the evo-
lution of phase x ∈ [0, 2π) given by

dx/dt = f (x) + Z(x)I(t),

where the impact of the input current I(t) is modulated by the
phase sensitivity function Z(x). In addition, Forger and Paydarfar
(2004) give optimal weak inputs to start or stop repetitive spiking
in a general biological oscillator, with dynamics expressed in polar
coordinates as

dr/dt = ϵI(t) sin(φ), dφ/dt = 1 + ϵI(t) cos(φ)/r (1)

with ϵ small. Particular biology systems, whose dynamics is qual-
itatively equivalent to those of (1), were also considered as exam-
ples to illustrate a calculus of variations approach to this problem.
This involves numerical solution of a set of ordinary differential
equations, which is obtained through the introduction of Lagrange
multipliers.

To extend the existing results, we consider input optimization
in thewell-knownmathematicalmodel for single neuron, the theta
model (Hoppensteadt & Izhikevich, 1997), which allows us to use
certain analytical methods, rather than relying only on numer-
ics. Initially, the neuron is tuned to be silent in the absence of in-
puts. One approach that we follow is to treat synaptic inputs as
the events with discrete onset time, which yields a phase plane
representation of the co-evolution of an intrinsic variable of the
neuron and a synaptic input variable, as introduced previously in
Rubin and Bose (2006) andWang et al. (2011) for the LIF and theta
model. Our results extend this idea, which can provide information
about specific time courses that are optimal, not just for the gen-
eration of a single spike or maximizing spike outputs but for mini-
mizing time of the given spikes. The theta model can be rigorously
derived as a normal form for Type I spiking neurons (Ermentrout,
1996; Hoppensteadt & Izhikevich, 1997; Izhikevich, 2007), which
features a transition from silence to oscillations through a SNIC bi-
furcation (Rinzel & Ermentrout, 1998). Thus, consideration of the
theta model allows us to explore how our results extend to a case
with additional biological relevance.

The remainder of this paper is organized as follows. In Section 2,
we analyze the theta model with discrete synaptic kicks, whose
cumulative sizes are constrained. We introduce phase plane struc-
tures to analyze the resulting optimization problem and discuss

some strategies for controlling the timing of inputs before mov-
ing on to prove some results about these structures and optimal
strategies. In Section 3, we define band in theta model and esti-
mate firing time of a band. We find that the firing time decreases
as input increases by analyzing the band time. We also estimate
the time of strategies by using the band time. In Section 4, we an-
alyze the fastest strategy for large −b and small G. When G ≫ −b,
and the input size G is fixed, the fastest strategy is studied to fire
m spikes for the given n bands in advance. We show that strategy
with minimum time for some area of G to firem spikes should par-
tition G into an initial input, which should be as large as possible,
and m − n kicks of the highest band size for each time of the first
m − n spikes fired. We also show that when G is sufficiently large,
big kick is the fastest strategy. Further, we establish an optimum
value for the dependent variable, θ , where each input should be de-
livered in a non-threshold-based strategy to fastest achieve given
subsequent spike output.We find that reset and kick strategy is the
fastest when G ≫ −b is small. We conclude with a discussion in
Section 5, wherewe summarize the results and discuss the novelty
and relevance of our findings in the neuroscience setting.

2. Model

We consider the dynamics of an theta model receiving positive
synaptic excitatory inputs,whose dynamics can be governedby the
equations (Wang et al., 2011),

θ ′
= 1 − cos θ + (b + g)(1 + cos θ), (2)

g ′
= −βg, (3)

where b < 0 is a parameter and θ ∈ [−π, π] mod 2π . The neuron
is said to fire when θ increases through π and is effectively reset
to −π . With g = 0, corresponding to the absence of excitatory in-
puts, and b < 0, which is the case we consider, the theta model
(2) has two critical points, namely an unstable given point at θU =

arccos 1+b
1−b > 0 and a stable given point at θS = − arccos 1+b

1−b < 0.
Furthermore, we represent the excitatory input by the equations

g(t+n ) = g(t−n ) + sn, (4)
N

n=1

sn = G (5)

for sn ∈ (0,G], n = 1, 2, . . . with N ≥ 1 finite and G > 0 given
in R. Eqs. (3) and (4) state that each input kick can be chosen to ar-
rive at any time and instantaneously updates the value of g when
it arrives and that the synaptic conductance g always decays expo-
nentially between kicks. Eq. (5) shows that the sum of all inputs,
however they may be divided, is always equal to a given input al-
lowance G. In the subsequent subsections, we assume that b and
β are fixed, and then consider the suitable partition and time to
input G to yield at least m of threshold crossings, or spikes fastest.
First, we discuss a phase plane representation of this problem and
consider some strategies.

2.1. Phase plane structures and strategies

We illustrate some key structures in the phase plane for system
(2), (3) in Fig. 1 (also see Wang et al., 2011). The theta-nullcline,
based on Eq. (2), is the curve Γ0 := {g = −(1 − cos θ + b(1 +

cos θ))/(1 + cos θ)}. Denote the minimal value, as ĝ , such that a
trajectory starting from (−π, g) will result in a spike if and only if
g > ĝ . To do this analytically, we seek ĝ such that the trajectory
from (−π, ĝ) reaches (0, −b) and thus crosses the θ-nullcline and
converges to θS (see Fig. 1). Although there are other trajectories
with initial values g above ĝ that also converge to θS by crossing
the θ-nullcline at points with θ > 0 and g < −b, this approach
nonetheless gives a reasonable approximation to ĝ (see Fig. 1).
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