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a b s t r a c t

Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference,
with the coefficients of the kernel expansion being determined at the first level and the kernel and
regularisation parameters carefully tuned at the second level, a process known as model selection. Model
selection for kernel machines is commonly performed via optimisation of a suitable model selection
criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large
number of kernel parameters, as for instance in the case of automatic relevance determination (ARD),
there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation
performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares
Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation.
The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first
level of inference, minimising a training criterion with an additional regularisation term acting on the
kernel parameters. The key advantage of this approach is that the values of only two regularisation
parameters need be determined in model selection, substantially alleviating the problem of over-fitting
the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic
and real-world binary classification benchmark problems, where kernel learning at the first level of
inference is shown to be statistically superior to the conventional approach, improves on our previous
work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with
reduced computational expense.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The training procedures for artificial neural networks (Bishop,
1995;MacKay, 1992), kernel learningmethods (Schölkopf & Smola,
2002) and Gaussian process classifiers (MacKay, 1998; Rasmussen
& Williams, 2006; Williams & Barber, 1998), can be viewed as
multi-level optimisation problems (Guyon, Saffari, Dror, & Cawley,
2009). The model parameters are optimised at the first level of in-
ference, for instance the weights of an artificial neural network, or
the coefficients of the kernel expansion of a kernel machine. How-
ever, there are normally a number of hyper-parameters that must
be determined, for example the number of hidden layer units in a
multi-layer perceptron network, the choice of kernel and the val-
ues of any associated kernel parameters for a kernel machine, or
regularisation parameters controlling the complexity of themodel.
These hyper-parameters are normally optimised at a second level
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of inference, a process known as model selection (Guyon, 2009).
The division between parameters and hyper-parameters typically
arises due to computational considerations. The dual parameters
of a kernel machine, for example, are generally given by the solu-
tion of a convex optimisation problem, for which computationally
efficient algorithms are available (Boyd & Vandenberghe, 2004). It
is therefore computationally convenient to alternate between op-
timising the coefficients of the kernel expansion at the first level
of inference and optimising the kernel and regularisation parame-
ters at the second level of inference, taking advantage of the simple
mathematical structure of the problem at the first level of infer-
ence.

In the case of kernel learningmethods, the convex nature of the
optimisation problem at the first level of inference implies a sin-
gle, global optimum, thus avoiding the potential pitfall of multi-
ple local minima that complicates the application of multi-layer
perceptron networks. However, in order to maximise generalisa-
tion performance in practical applications, the values of a small
number of regularisation and kernel parametersmust also be care-
fully tuned during model selection (Chapelle, Vapnik, Bousquet, &
Mukherjee, 2002). This is most often achieved via minimisation of
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a cross-validation estimate of generalisation performance, using
grid search, Nelder–Mead simplex (Nelder &Mead, 1965) or gradi-
ent descent-based methods (Chapelle et al., 2002). This approach
has been shown to be highly effective for kernel machines with a
small number of hyper-parameters (e.g. Cawley, 2006). However,
as the number of hyper-parameters becomes large, there is an in-
creasing risk of over-fitting the model selection criterion, result-
ing in poor performance (Cawley & Talbot, 2007, 2010). Chapelle
(2002) suggests that the additional estimation error might reason-
ably be expected to grow with the square root of the number of
hyper-parameters. This danger has been observed previously (Ben-
gio, 2000), and is especially evident in studies involving Automatic
Relevance Determination (ARD), where the kernel includes sepa-
rate scaling parameters for each feature. It is also well understood
that the model selection criterion should not be also used for per-
formance estimation as its direct optimisation duringmodel selec-
tion will introduce an optimistic bias, and hence procedures such
as nested cross-validation are necessary (Cawley & Talbot, 2010;
Cherkassky & Mulier, 1998; Hastie, Tibshirani, & Friedman, 2001).
While over-fitting of the model selection criterion is clearly a sig-
nificant problem, research towards a potential solution appears to
have received relatively little attention. Cawley and Talbot (2007)
propose the addition of a regularisation term to the model selec-
tion criterion penalising large values of the kernel parameters, and
thus promoting a relatively smooth model. Regularisation of the
kernel parameters is shown to be effective in some cases, however
the problem of over-fitting in model selection is far from solved.
The use of automatic relevance determination has several distinct
benefits, including (cf. Chapelle et al., 2002):

• The potential for improved generalisation performance—it is
intuitively reasonable to expect that suppressing irrelevant
attributes should result in improvements in accuracy.

• Explanation of the data—determination of which attributes
have useful explanatory power, and which do not, is often a
useful scientific finding.

• Reduced cost of data collection—if redundant attributes can be
identified and eliminated, there is no need to determine the
values of that attribute in operation. In some applications (such
as medical diagnosis, where some screening tests are more
expensive to conduct than others), the cost of evaluating the
attributes may be an important practical consideration.

Thus, even if the use of automatic relevance determination does
not give a performance advantage over the more basic RBF kernel,
it is worth developing methods to avoid over-fitting in model
selection so that the second and third benefits of ARD can be
obtained more fully and reliably. In many applications, especially
where data are in limited supply, a simple but incorrect model
will out-perform amore correct, but more complexmodel because
the parameters of the model can be estimated more reliably. A
common example is the use of naive Bayes in text classification,
where the assumption of independence is clearly not justified. If
explaining the data is an important concern, the correct model
should be used, and methods developed to allow the parameters
to be estimated more accurately and reliably.

The approach presented in this paper seeks tominimise the risk
of over-fitting in model selection by minimising the number of
hyper-parameters to be optimised during model selection, hence
minimising the degrees of freedom available to over-fit the model
selection criterion. This is achieved by demoting the selection of
kernel parameters from the second level of inference to the first,
such that they are jointly optimised with the dual model param-
eters, minimising a single regularised training criterion. An addi-
tional regularisation term is used to penalise values of the kernel
parameters likely to result in poor generalisation performance. As
the values of only two regularisation parameters need then be de-
termined in model selection, it is reasonable to expect the chance

of over-fitting the model selection criterion to be substantially re-
duced, even when many kernel parameters are used. The optimi-
sation of kernel parameters at the first level of inference is similar
to the design of radial basis function networks via gradient descent
methods (Webb& Shannon, 1998); however the addition of a regu-
larisation term is required tomaintain generalisation performance.

The remainder of this paper is structured as follows: Section 2
describes a training algorithm for kernel ridge regression with
optimisation of the kernel parameters at the first level of inference.
Results obtained on a suite of synthetic and real-world benchmark
datasets is presented in Section 3. Section 4 provides discussion,
including suggestions for further research and recommendations
for practical applications. Finally, the work is summarised and
conclusions drawn in Section 5.

2. Kernel learning at the first level of inference

Let D = {(xi, yi)}ℓi=1, represent the training sample, where
xi ∈ X ⊂ Rd is a vector of explanatory variables describing
the ith example, and yi ∈ {−1, +1}, is the corresponding de-
sired response indicating the class to which the example belongs.
The Least-Squares Support Vector Machine (LS-SVM) classifier
(Suykens, VanGestel, De Brabanter, DeMoor, &Vanderwalle, 2002)
constructs a linear classifier, f (x) = w · φ(x) + b, in a feature
space, F , defined via a fixed transformation φ : X → F . How-
ever, rather than define the feature space directly, it is instead in-
duced by a positive definite kernel function, K : X × X → R,
giving the inner product between points in the feature space, such
that K(x, x′) = φ(x) · φ(x′). In this study, we adopt the simple
Gaussian Radial Basis Function (RBF) kernel,

K(x, x′
; θ) = exp


−θ1∥x − x′

∥
2 , (1)

where θ1 is a kernel parameter controlling the sensitivity of the
kernel, and the automatic relevance determination (ARD) or fea-
ture scaling variant of the RBF kernel (Chapelle et al., 2002),

K(x, x′
; θ) = exp


−

d
i=1

θi[xi − x′

i]
2


, (2)

where θi are kernel parameters allowing the sensitivity of the ker-
nel with respect to each of the explanatory variables to be tuned
independently. Ideally, the kernel parameters associated with ir-
relevant features will adopt very small values, implementing a
formof Automatic Relevance Determination (ARD) (MacKay, 1994;
Neal, 1996). For fixed θ, the primal model parameters, (w, b), are
given by the minimiser of a convex training criterion

L(w, b) =

ℓ
i=1

c (yi, f (x;w, b)) +
λ

2
∥w∥

2,

where c(·, ·) is a convex loss (in this case, the squared loss c(y, f ) =

0.5(y − f )2) representing the data misfit and λ is a regularisation
parameter controlling the bias–variance trade-off (Geman, Bienen-
stock, & Doursat, 1992). It can be shown that the vector of model
parameters,w, can be expressed as an expansion over the training
examples, such that

w =

ℓ
i=1

αiφ(xi) H⇒ f (x;w, b) =

ℓ
i=1

αiK(xi, x) + b,

where α = (αi)
ℓ
i=1 is a vector of dualmodel parameters. For a fixed

value of the regularisation parameter, λ, the optimal dual model
parameters are given by the solution of a system of linear equa-
tions,
K + λI 1
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