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a b s t r a c t

Latent Low-RankRepresentation (LatLRR) delivers robust and promising results for subspace recovery and
feature extraction through mining the so-called hidden effects, but the locality of both similar principal
and salient features cannot be preserved in the optimizations. To solve this issue for achieving enhanced
performance, a boosted version of LatLRR, referred to as Regularized Low-Rank Representation (rLRR), is
proposed through explicitly including an appropriate Laplacian regularization that can maximally pre-
serve the similarity among local features. Resembling LatLRR, rLRR decomposes given data matrix from
two directions by seeking a pair of low-rank matrices. But the similarities of principal and salient fea-
tures can be effectively preserved by rLRR. As a result, the correlated features are well grouped and the
robustness of representations is also enhanced. Based on the outputted bi-directional low-rank codes by
rLRR, an unsupervised subspace learning framework termed Low-rank Similarity Preserving Projections
(LSPP) is also derived for feature learning. The supervised extension of LSPP is also discussed for discrim-
inant subspace learning. The validity of rLRR is examined by robust representation and decomposition of
real images. Results demonstrated the superiority of our rLRR and LSPP in comparison to other related
state-of-the-art algorithms.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Low-rank subspace recovery and matrix decomposition have
been attracting increasing attention and research interests in the
communities of machine learning and computer vision (Beck &
Teboulle, 2009; Candes, Li, Ma, & Wright, 2011; Fukushima &
Mine, 1981; Lin et al., 2009; Liu, Jiao, Shang, Yin, & Liu, 2013;
Liu, Lin, De La Torre, & Su, 2012; Liu et al., 2013; Liu, Lin,
& Yu, 2010; Liu & Yan, 2011, 2012; Nesterov, 1983; Wright,
Ganesh, Rao, & Ma, 2009; Zhang, Yan, & Zhao, 2013a; Zhou, Li,
Wright, Candes, & Ma, 2010), since low-rank matrices can of-
ten be observed in various real applications (such as face recog-
nition Qiao, Chen, & Tan, 2010b; Wright, Yang, Sastry, & Ma,
2009, video surveillance Candes et al., 2011; Wright, Ganesh
et al., 2009, handwriting representation Zhang, Liu, & Zhao,
2013 and system identification Chandrasekaran, Sanghavi, Par-
rilo, & Willsky, 2011) due to the fact that high-dimensional
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data usually lie in or lie near a low-dimensional subspace (Can-
des et al., 2011; Jolliffe, 1986). The classical Principal Component
Analysis (PCA) (Jolliffe, 1986) and the recently emerged matrix re-
covery techniques (Candes et al., 2011; Lin, Chen, Wu, & Ma, 2009;
Liu et al., 2013, 2010; Wright, Ganesh et al., 2009) are essentially
based on the assumption that the data of interests is approximately
drawn from low-rank subspaces.

Robust PCA (RPCA) (Candes et al., 2011; Wright, Ganesh et al.,
2009) is onemost representative criterion for recovering low-rank
matrices. Note that under much broader conditions, as long as the
given observation matrix XO is corrupted by sufficiently sparse er-
rors E, RPCA can exactly recover the low-rank XL (XO = XL + EO)
from XO = Y + E via a convex nuclear norm minimization prob-
lem (Candes et al., 2011). RPCA implicitly assumes that the sam-
ples are drawn from a single low-rank subspace (Liu et al., 2013),
but most real datasets are usually described by a union of multiple
subspaces, thus the recovery of RPCA may be inaccurate in reality
(Liu et al., 2013). To address this issue, a more reasonable general
model called Low-Rank Representation (LRR) (Liu et al., 2013, 2010)
is proposed by considering the case that data are approximately
drawn from several low-rank subspaces. Similar to Sparse Repre-
sentation (SR) (Cheng, Yang, Yan, Fu, & Huang, 2010; Qiao et al.,
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2010b;Wright, Yang et al., 2009; Zhang, Yan, & Zhao, 2013b; Zhang,
Zhao, & Chow, 2013; Zhou, Tao, & Wu, 2011), LRR computes the
low-rank representation among all candidates that represent the
row space of data vectors as a linear combination of basis in a dic-
tionary (Liu et al., 2013, 2010), but differently LRR aims to learn
the low-rank representation of all data vectors jointly by a convex
problem. In addition, LRR has been proved to be a promising sub-
space recovery method, and is robust to noise and outliers, espe-
cially when the data sampling is sufficient and errors are properly
bounded (Liu et al., 2013, 2010).

Note that LRR performs error correction and subspace recov-
ery using the observed data matrix as dictionary, but insufficient
and/or grossly corrupted observations usually put its effectiveness
in jeopardy in practice. More specifically, if the sampling of XO is
insufficient, the optimal solution Z∗ of LRR is the trivial identity
matrix (Liu & Yan, 2011), which will be invalid for clustering sam-
ples. To improve LRR, an enhanced version of LRR, called Latent LRR
(LatLRR) (Liu et al., 2013; Liu & Yan, 2011), was recently proposed
for recovering the hidden effects through integrating certain latent
observations that is capable of providing extra information for low-
rank basis estimation. For subspace recovery, LatLRR constructs the
dictionary using both observed and unobserved hidden data XH , so
LatLRR can resolve the insufficient sampling issue that may be suf-
fered by LRR (i.e., the number of points is equal to or larger than
the rank of union of subspaces) on condition that the dictionary
is sufficient to represent the subspaces (Liu & Yan, 2011). It is also
elaborated that the hidden effects can also be approximately recov-
ered via a convex nuclear normproblem (Liu et al., 2013; Liu & Yan,
2011). Unlike LRR, LatLRR reconstructs given data from two direc-
tions, i.e., row and column. Based on such strategy, reconstructing
along both row space and column space simultaneously can work
complementarily when handling missing values, i.e., LatLRR is
more robust to noise than LRR (Liu & Yan, 2011). But it is important
to note that the so-called hidden effects brought to the problem by
XH are unclear. More importantly, low-rank representation simi-
larly aims to encode close features to similar reconstruction coeffi-
cients as SR does (Zheng et al., 2011), but LatLRR cannot guarantee
such property due to the fact that it does not consider preserving
such dependence relationships among features. As a result, close
features may be encoded as dissimilar and even different recon-
struction coefficients, even if the dictionary is sufficient to repre-
sent the subspaces. As observed from the low-rank representation
by LatLRR for two similar faces in Fig. 3, the low-rank reconstruc-
tion coefficients of the two faces are encoded as dissimilar ones. But
note that suchdeficiencymaypotentiallyweaken the robustness of
LatLRR for low-rank subspace recovery in reality. In this paper, we
mainly focus on addressing this problem to enhance performance
and improve the robustness of LatLRR for matrix recovery and de-
composition by endowing it the capability to preserve the similar-
ities among local features in the reconstructive procedures.

The following highlights the major contributions of this work.
First, a Regularized Low-Rank Representation (rLRR) framework for-
mulated on LatLRR is technically proposed. A data-dependent
Laplacian regularization term is added to the LatLRR criterion for
preserving the similarity of local features in the reconstructive
process. With the similarity effectively preserved by rLRR, local
features can be well grouped in close vicinity of a dense region,
reflected in the low-rank reconstruction coefficients. Thus, more
discriminant low-rank coefficients and robust representations can
be produced by rLRR. It should be noted that the idea of Lapla-
cian regularization has been widely used in many machine learn-
ing studies, such as Cai, He, Han, and Huang (2011), Gao, Tsang,
Chia, andZhao (2010) andZheng et al. (2011). Second, the proposed
rLRR framework possesses all properties of LatLRR, including the
capability of recovering the hidden effects from unobserved data
and extracting informative features from new data. In addition,

rLRR also learns two-directional low-rank coefficients to recon-
struct given data, and the effects from both observed and hidden
data can be approximately recovered by a convex nuclear norm
minimization problem efficiently. Although LatLRR and our reg-
ularized extension can effectively do feature extraction by a lin-
ear transformation using the low-rank left-reconstruction matrix
(Liu & Yan, 2011), this process cannot reduce the dimensionality of
data. To this end, we in this paper also propose a Low-rank Similar-
ity Preserving Projections (LSPP) framework for unsupervised sub-
space learning and feature learning. For effective subspace learning
and feature learning, LSPP can explicitly preserve the similarity and
locality among both principal and salient features in the encod-
ing process in addition to computing an orthogonal projectionma-
trix to convert high-dimensional data to a reduced feature space.
The detailed computational issues of both rLRR and LSPP are also
shown, and the bi-directional reconstruction coefficients delivered
by LatLRR can also be embedded into our LSPP framework for di-
mensionality reduction and feature learning. In addition, we also
mathematically show that LSPP can easily be extended to super-
vised scenarios to perform discriminant subspace learning under
an orthogonal trace ratio criterion (Jia, Nie, & Zhang, 2009; Wang,
Yan, Xu, Tang, & Huang, 2007).

The paper is outlined as follows. In Section 2, we briefly review
the LatLRR formulation and the Augmented Lagrange Multipliers
(ALM)method. Section 3 proposes the rLRR frameworkmathemat-
ically. Subsequently, Section 4 describes the presented LSPP algo-
rithm. We in Section 5 show the simulation settings and evaluate
the proposed methods over real datasets. Finally, the concluding
remarks are offered in Section 6.

2. Preliminaries

We briefly revisit the problems of the LatLRR and the aug-
mented Lagrange multipliers (ALM) method, which are closely re-
lated to our proposed algorithm.

2.1. Latent low-rank representation (LatLRR)

For a given observed data matrix XO ∈ Rn×N , with each column
denoting an observation vector, LatLRR (Liu & Yan, 2011) aims to
construct the dictionary using both observed and unobserved hid-
den data. To address the issue of insufficient sampling and improve
the robustness of LRR against noise, LatLRR optimizes the following
criterion:

Min
ZO,H
∥ZO,H∥∗, Subj XO = [XO, XH ]ZO,H , (1)

where ∥ZO,H∥∗ denotes the nuclear norm (Fazel, 2002) of ZO,H ,
namely the sum of the singular values, the concatenation (along
column) of XO and XH is used as a dictionary, and XH represents the
unobserved, hidden data. The above problem can resolve the in-
sufficient sampling issue, supposing that the dictionary [XO, XH ] is
sufficient to represent the subspaces. Suppose XH ∈ Rn×N , let Z∗O,H
be the optimal solution to Eq. (1) and Z∗O,H =


Z∗O|H; Z

∗

H|O


be its row-

wise partition such that Z∗O|H ∈ RN×N and Z∗H|O ∈ RN×N correspond
to XO and XH , respectively, then Z∗O|H is a nontrivial block-diagonal
matrix that can exactly reveal the true subspace membership even
though the sampling of XO is insufficient (Liu & Yan, 2011). Then,
LatLRR focuses on recovering the affinitymatrix Z∗O|H using only the
observed data XO. As stated in Liu and Yan (2011), the above prob-
lem is ‘‘ill-posed’’ if without imposing any restriction on XO and
XH , because Z∗O|H is computed in the presence of both XO and XH .
In addition, LatLRR studies the problem where both observed and
hidden data are sampled from the same collection of low-rank sub-
spaces.

Let UΣV be the skinny Singular Value Decomposition (SVD) of
the dictionary matrix [XO, XH ], and partition V as V = [VO, VH ]
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