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a b s t r a c t

We are interested in developing a safe semi-supervised learning that works in any situation. Semi-
supervised learning postulates that n′ unlabeled data are available in addition to n labeled data. However,
almost all of the previous semi-supervised methods require additional assumptions (not only unlabeled
data) to make improvements on supervised learning. If such assumptions are not met, then the methods
possibly perform worse than supervised learning. Sokolovska, Cappé, and Yvon (2008) proposed a
semi-supervised method based on a weighted likelihood approach. They proved that this method
asymptotically never performs worse than supervised learning (i.e., it is safe) without any assumption.
Theirmethod is attractive because it is easy to implement and is potentially general. Moreover, it is deeply
related to a certain statistical paradox. However, the method of Sokolovska et al. (2008) assumes a very
limited situation, i.e., classification, discrete covariates, n′

→ ∞ and a maximum likelihood estimator.
In this paper, we extend their method by modifying the weight. We prove that our proposal is safe in a
significantlywide range of situations as long as n ≤ n′. Further, we give a geometrical interpretation of the
proof of safety through the relationship with the above-mentioned statistical paradox. Finally, we show
that the above proposal is asymptotically safe even when n′ < n by modifying the weight. Numerical
experiments illustrate the performance of these methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Semi-supervised learning (SSL) has been shown to be effec-
tive in various fields. In the usual supervised learning (SL), we are
given complete pairs of feature vector x and a label y{(xi, yi) ∈

X × Y|i = 1, 2, . . . , n} generated from p(x)p(y|x). These data
are called labeled data. In the SSL setting, additional unlabeled data
{x′

j| j = 1, 2, . . . , n′
} generated from p′(x) are available. Though

various settings have been considered for SSL, we define SSL as the
case of p′(x) ≡ p(x) throughout this paper. The goal of SSL is to
improve the performance of SL by using unlabeled data. Almost
all of the existing SSL methods have assumptions. For example,
Nigam, McCallum, Thrun, and Mitchell (2000), Singh, Nowak, and
Zhu (2008), and Sinha and Belkin (2008) have a cluster assump-
tion, Bennett andDemiriz (1999) a low-density assumption, Belkin,
Niyogi, and Sindhwani (2006), and Melacci and Belkin (2011) a
manifold assumption, and co-training (Blum & Mitchell, 1998) a
feature-split assumption. We shall refer to these assumptions as
SSL assumptions. If the assumptions are not satisfied, SSL may per-
form worse than SL. This sounds somewhat strange because we
have additional information fromunlabeled data in the SSL setting.
Thus, we conjecture that even without such assumptions, there is
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a form of SSL that never performs worse than SL. Furthermore, if
the SSL assumptions are satisfied, SL can also exploit them. Several
previous literatures compared SSLwith SL that does not exploit SSL
assumptions. In such cases, the comparison may be unfair because
the effect of the unlabeled data can be confused with the effect of
the SSL assumptions. We are interested in SSL that requires no as-
sumptions to improve SL and our goal is to develop a SSL method
that is always as good as or better than SL with as few assumptions
as possible.We say that such an SSL is ‘‘safe’’ throughout the paper.

To the best of our knowledge, there have been two proposals
for safe SSL so far. Sokolovska et al. (2008) proposed the first safe
semi-supervised classification. Li and Zhou (2011) also proposed
a safe semi-supervised support vector machine. We will focus
on the results of Sokolovska et al. (2008) in this paper because
their method is simpler and potentially general. Their method
employs a weighted likelihood approach with an estimated ratio
p′(x)/p(x) as its weight. Sokolovska et al. (2008) proved that this
weighted likelihood approach is asymptotically safe without any
SSL assumptions. Their method is also theoretically interesting
in that it is deeply related to a statistical paradox: even if you
know the true value of nuisance parameter, you should estimate
it using data in order to attain a more accurate interest parameter
estimation. The relationship with this paradox will be discussed
in Section 4. Note that Sokolovska et al. (2008) only concerns
a considerably simple setting: the problem is restricted to only
classification, the covariate space X is finite, n′

→ ∞, the
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maximum likelihood estimator is used. It is not a trivial question
to ask how widely their method and theory can be generalized by
removing these restrictions.

In this paper, we propose an extension of Sokolovska et al.
(2008)’s method that is free of these restrictions. Amajor difficulty
in proving its safety arises in the continuity of X. In this case, p′/p
is a density ratio, so it may diverge to infinity. There are several
ways to avoid this problem. Our choice is to modify the weights as
follows:

p′(x)+ ϵ

p(x)+ ϵ
(1)

where ϵ is a small positive constant. With this modified weight,
we prove that the weighted likelihood estimator is asymptotically
safe. We call this estimator DRESS I (Density Ratio Estimation-
based Semi-Supervised estimator). The proof of safety is free from
all the above restrictions but requires only twomajor assumptions:
the statistical model for p(x) is correctly specified and n ≤ n′.
Many SSL methods assume the second assumption n ≤ n′, be-
cause the SSL setting is supposed to havemany unlabeled samples.
In general, the assumptions of the previous SSL methods concern
the structure between two distributions p(x) and p(y|x). In con-
trast, the first assumption says that if we prepare a sufficiently rich
model g(x; η) such that it contains p(x), DRESS I is guaranteed to
be safe.

Furthermore, we give a geometrical interpretation of the above
asymptotical results. As described before, this weighted likelihood
approach is deeply related to the statistical paradox mentioned
above. Henmi and Eguchi (2004) analyzed its structure and gave a
geometrical interpretation. Using similar techniques, we also give
a graphical interpretation of the theoretical result. This graphical
interpretation implies the existence of a better estimator than
DRESS I. We show that such an estimator can be obtained by
simply modifying the weights again. We call this estimator DRESS
II. DRESS II is always safe as long as the statistical model for p(x)
is correctly specified. In other words, DRESS II is safe even if there
are fewer unlabeled data than labeled data. In this sense, DRESS II is
an almost perfect answer to our conjecture. We also illustrate the
performance of DRESS I and II by numerical experiments.

DRESS I and II have two drawbacks. The first is if the model for
p(y|x) is correctly specified, both DRESS I and II perform asymptot-
ically equally to SL (i.e., no improvement is obtained). In numerical
experiments (i.e., n is finite), DRESS performs slightly worse than
SL. However, the model misspecification of p(y|x) often occurs in
SSL. The SSL setting assumes only a few labeled data. Therefore, if
you apply the conventional supervised model selection methods,
they tend to select simpler models than the true model. Thus, the
first drawback does not matter much. The second drawback is that
DRESS needs a condition to guarantee the improvement on super-
vised learning. This condition requires that the statistical model
of p(x) is correctly specified. Exactly speaking, this condition is
too strong because it is a sufficient condition to guarantee the im-
provement. A mitigated condition will be discussed in Section 4.1.
However, it is still not trivial to find when this mitigated condition
holds. This drawback can be easily overcome by applying density
ratio estimation method (e.g., Kanamori, Hido & Sugiyama, 2009)
in practice because we do not need to know the knowledge about
the true density itself but only the density ratio p′(x)/p(x). Actu-
ally, the author showed that DRESS I with parametric density ratio
estimation is also asymptotically safe and performs better than SL
on many real-world data sets (Kawakita & Kanamori, 2013). This
is because specifying a model of the density ratio is much easier
than specifying the model for density itself. In this sense, the pro-
posals in this paper are not always good enough for real-world ap-
plications. However, this paper’s work is conceptually basic and
provides a mathematically firm basis of Kawakita and Kanamori

(2013). Furthermore, it is intuitively more understandable and has
a prominentmathematical structure. Our work is important in this
sense.

The paper is organized as follows. In Section 2, we describe the
setup of the semi-supervised learning problem. By extending the
method of Sokolovska et al. (2008) tomore general setting, we pro-
posed two semi-supervised estimators in Section 3. In Section 4,
we analyze their performance by asymptotic theory. Section 5 pro-
vides numerical experiments to illustrate our result. Section 6 is
the conclusion.

2. Problem formulation

Let X ⊂ ℜ
d be a covariate space and Y be a label space. The la-

bel spaceY can be discrete orℜ. Let (X×Y,A, P) be a joint proba-
bility space and let (X,Ax, P ′) be amarginal probability space. For
two positive integers n and n′, we will consider a direct product
space ((X × Y)n × Xn′

,An
× An′

x , P
nPn′

x ). Assume that the proba-
bilitymeasures P(x, y) and P ′(x) have Radon–Nikodym derivatives
p(x, y) and p′(x). These indicate that we have n labeled data and n′

unlabeled data

DL := {(Xi, Yi) ∈ X × Y|i = 1, 2, . . . , n},

DU := {X ′

j ∈ X| j = 1, 2, . . . , n′
}

(2)

where the pairs {(Xi, Yi)} are i.i.d. samples from p(x)p(y|x) and
{x′

j} is generated independently from p′(x). For convenience, we
write DL ∪ DU as D. Here, p′(x) can be regarded as a test data dis-
tribution. In other words, the test data (x, y) are generated from
p′(x)p(y|x). Our interest is to estimate the conditional probability
p(y|x). The problem is called a classification problem when Y is fi-
nite. For Y = ℜ, the problem is called a regression problem. If only
the labeled data DL is available, the problem is called a supervised
learning. Assume that both DL and DU are available in the sequel. If
p′(x) ≠ p(x), this setting is said to be a covariate shift (Shimodaira,
2000). In contrast, we say that this setting is for semi-supervised
learning if p′(x) ≡ p(x) (Chapelle, Schölkopf, & Zien, 2006). Note
that we do not need to assume n′

≫ n unlike the usual semi-
supervised setting. To estimate p(y|x), we use the model

My|x :=

p(y|x;α)|α ∈ A ⊂ ℜ

d . (3)

In the usual supervised setting, this model suffices to estimate
p(y|x). To define our semi-supervised estimator, we need to pre-
pare a model of p(x) defined as

Mx := {g(x; η)|η ∈ N ⊂ ℜ
k
}. (4)

We say that the model Mx is correctly specified if it contains the
true density p(x). In this paper,Mx is assumed to be correctly spec-
ified,whereasMy|x is not necessarily correctly specified. Letα∗ be a
parameter such that p(y|x;α∗) is the closest distribution to p(y|x)
in terms of a certain criterion. The exact definition of α∗ in Sec-
tion 3.2. The goal is to estimate the parameter α∗ based on avail-
able data, i.e., DL in supervised learning or D in semi-supervised
learning.

Finally, we summarize the differences between our setting and
that of Sokolovska et al. (2008). Sokolovska et al. (2008) assume
that

1. the feature space X is restricted to be finite.
2. Y is restricted to be finite (classification).
3. only the maximum likelihood estimator is considered.
4. n′

→ ∞ (p′(x) is known).

In contrast, we place no such restrictions.



Download English Version:

https://daneshyari.com/en/article/406343

Download Persian Version:

https://daneshyari.com/article/406343

Daneshyari.com

https://daneshyari.com/en/article/406343
https://daneshyari.com/article/406343
https://daneshyari.com

