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a b s t r a c t

The extreme learning machine (ELM) has attracted increasing attention recently with its successful
applications in classification and regression. In this paper, we investigate the generalization performance
of ELM-based ranking. A new regularized ranking algorithm is proposed based on the combinations
of activation functions in ELM. The generalization analysis is established for the ELM-based ranking
(ELMRank) in terms of the covering numbers of hypothesis space. Empirical results on the benchmark
datasets show the competitive performance of the ELMRank over the state-of-the-art ranking methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The extreme learning machine (ELM) proposed by Huang, Zhu,
and Siew (2006) can be considered as a learning system like
feedforward neural networks (FNNs). Compared with FNN, the
main feature of ELM is that the hidden node parameters are
independent not only with the training data but also with each
other, and can be generated before seeing the training data (Huang,
Wang, & Lan, 2011). Recently, extensive studies have been paid
on the ELM-like learning system through empirical evaluations
(Bueno-Crespoa, García-Laencinab, & Sancho-Gómez, 2013; Cao,
Liu, & Park, 2013; Huang, Zhou, Ding, & Zhang, 2012; Wang, Cao, &
Yuan, 2011) and theoretical analysis (Huang, Ding, & Zhou, 2010;
Liu, Lin, & Xu, 2013; Zhang, Lan, Huang, & Xu, 2012).

The previous studies of ELM usually focus on the classification
and regression problems. The natural question is: Is the ELM-like
learning system suitable for other learning tasks? To the best of
our knowledge, the generalization analysis for ranking under the
ELM framework remains untouched. In this paper, we consider the
generalization performance of ELM-based least square ranking.

The ranking problem has gained increasing attention in ma-
chine learning with the fast development of ranking techniques on
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searching engines and information retrieval. From different per-
spectives, many ranking algorithms have been proposed including
RankSVM (Herbrich, Graepel, & Obermayer, 2000; Joachims, 2002),
RankNet (Burges, Ragno, & Le, 2007; Burges et al., 2005), Rank-
Boost (Freund, Iyer, Schapire, & Singer, 2003), andMPRank (Cortes,
Mohri, & Rastogi, 2007). The generalization analysis for the rank-
ing problem has been established via stability analysis (Agarwal &
Niyogi, 2009; Cossock & Zhang, 2008), uniform convergence esti-
mate based on the capacity of hypothesis spaces (Clemencon, Lu-
ogosi, & Vayatis, 2008; Rejchel, 2012; Rudin, 2009; Zhang & Cao,
2012), and approximation estimate based on the operator approx-
imation (Chen, 2012; Chen et al., 2013).

In this paper, inspired by the theoretical analysis in Liu et al.
(2013), we propose an ELM-based ranking (ELMRank) algorithm
to search a ranking function in a coefficient-based regularization
scheme. The representer theoremand generalization bound are es-
tablished for the proposed algorithm. Because the random node
function in ELM has flexible forms, we use the uniform conver-
gence analysis based on covering numbers to establish the gener-
alization bounds.

Now, we highlight some features of this paper.
• A new ranking algorithm, called ELMRank, is proposed based

on the hypothesis space of ELM. The representer theorem is
provided to show that ELMRank also inherits the computation
feasibility of ELM.

• Generalization analysis of ELMRank is established in terms of
the capacity of the hypothesis spaces. This extends the previous
analysis for regression in Liu et al. (2013) to the ranking settings.
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0893-6080/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.neunet.2014.01.015
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.01.015&domain=pdf
mailto:chenhongml@163.com
mailto:chenh@mail.hzau.edu.cn
mailto:pengjt1982@126.com
mailto:yicongzhou@umac.mo
mailto:lilq@hubu.edu.cn
mailto:zhibinpan2008@gmail.com
http://dx.doi.org/10.1016/j.neunet.2014.01.015


120 H. Chen et al. / Neural Networks 53 (2014) 119–126

• Experiments on public datasets demonstrate the competitive
ranking prediction performance of ELMRank.

The remainder of this paper is organized as follows. In Section 2,
we introduce the ELM-based learning system for least square
ranking. The representer theorem is also proved in this section.
The generalization analysis is established in Section 3 and the
experimental evaluations are given in Section 4. Finally, a brief
conclusion is presented in Section 5.

2. ELM-based ranking

Now we recall some basic concepts of the ranking problem
(Agarwal & Niyogi, 2009). Let X ∈ Rd be a compact metric space
and Y = [0,M] for some M > 0. A probability distribution ρ,
defined on Z := X × Y, describes the relation between the input
x ∈ X and the output y ∈ Y. x is ranked higher than x′ if y > y′, and
lower than x′ if y < y′. In particular, there is no ranking preference
between x and x′ if y = y′.

In this paper, the least square ranking loss

ℓ(f , z, z ′) := ℓ(f , (x, y), (x′, y′)) = (y − y′
− (f (x) − f (x′)))2

is used to describe the difference between y − y′ and f (x) − f (x′).
The expected risk (also called the generalization error) of a ranking
function f is defined as

E(f ) =


Z


Z

(y − y′
− (f (x) − f (x′)))2dρ(x, y)dρ(x′, y′).

Given samples z := {zi}mi=1 = {(xi, yi)}mi=1 ∈ Zm independently
drawn according to ρ, the empirical ranking risk is defined as

Ez(f ) =
2

m(m − 1)

m−1
i=1

m
j=i+1

(yi − yj − (f (xi) − f (xj)))2.

The least square ranking aims at finding a function f : X → R
such that E(f ) is as small as possible.

Following the kernel methods for classification and regression,
many ranking algorithms are proposed under a Tikhonov regular-
ization scheme associated with a Mercer kernel (Agarwal, Dugar,
& Sengupt, 2010; Agarwal & Niyogi, 2009; Chen, 2012; Chen et al.,
2013). The reproducing kernel Hilbert space (RKHS) HK associated
with the kernel K is defined to be the closure of the linear span
of the set of functions {K(x, ·) : x ∈ X} with the inner prod-
uct ⟨ ·, · ⟩K given by ⟨K(x, ·), K(x′, ·)⟩K = K(x, x′). Then, ∥f ∥2

K =m
i,j=1 βiβjK(xi, xj) for f =

m
i=1 βiK(xi, ·) ∈ HK .

Agarwal and Niyogi (2009) proposed the following regularized
ranking algorithm:

f̃z,γ = arg min
f∈HK


Ez(f ) + γ ∥f ∥2

K


, (1)

where γ > 0 is the regularization parameter.
Let λ =

m−1
2m γ and

Ẽz(f ) =
1
m2

m
i,j=1

(yi − yj − (f (xi) − f (xj)))2.

The regularized scheme (1) can be transformed as below:

f̃z,λ = arg min
f∈HK


Ẽz(f ) + λ∥f ∥2

K


. (2)

It is worth noticing that the minimizer (2) admits a representa-
tion of the form (Chen, 2012)

f̃z,λ =

m
i=1

β̃z,iKxi , β̃z,i ∈ R.

Hence, the kernel-based regularized ranking focuses on searching
the coefficients in a data dependent hypothesis space.

Inspired by the computation feasibility of ELM (Huang et al.,
2012, 2006; Liu et al., 2013), in this paperwe consider a regularized
ranking scheme in an ELM-based hypothesis space. Let φ(αi, ·) :

Rd
→ R be the random node function for the hidden parameter

αi ∈ Rl and n ∈ N be the number of hidden nodes. The ELM-based
hypothesis space is defined as

Mn =


n

i=1

βiφ(αi, ·) : αi ∈ Rl, β = (β1, . . . , βn)
T

∈ Rn


,

where α = (α1, . . . , αn)
T

∈ Rn×l are randomly drawn from a
uniform distribution µ in Rn×l. Here, Mn can be considered as a
hypothesis space of three layer FNNs with n hidden nodes and one
output node whose hidden connection is α and output connection
is β (Huang et al., 2010; Liu et al., 2013). That is to say {φ(αi, ·)}

n
i=1

map the first layer to the hidden layer and
n

i=1 βiφ(αi, ·) forms
the output layer by the output weights β . In ELM, the sigmoid and
Gaussian functions are two popular random node functions.

Form training samples z = {(xi, yi)}mi=1 ∈ Zm, the output of the
ELM-based ranking (ELMRank) with n hidden nodes is

fz,λ = arg min
f∈Mn


Ẽz(f ) + λ∥f ∥2

ℓ2


, (3)

where

∥f ∥2
ℓ2

= inf


n

i=1

β2
i : f =

n
i=1

βiφ(αi, ·)


.

Denote fz,λ =
n

i=1 βz,iφ(αi, ·). From (3), we know that the
output weights βz = (βz,1, . . . , βz,n)

T can be determined by

βz = arg min
β∈Rn


1
m2

m
j,k=1


yj − yk −


n

i=1

βiφ(αi, xj)

−

n
i=1

βiφ(αi, xk)

2

+ λ

n
i=1

β2
i


. (4)

Compared with the kernel-based regularized ranking, there are
twokey differences for ELMRank: one is that the parameterα of the
hidden node is independent of the samples z; the other is that φ is
the activation function or its composition in the FNN framework.

Recently, ELM for learning to rank has been well discussed
for relevance ranking (Zong & Huang, 2013). Although our paper
is closely related with Zong and Huang (2013), there are two
features for our analysis and applications: In theory, we establish
the generalization bound of ELMRank which fills the gap on
generalization analysis of ranking under the ELM framework;
In applications, we focus on learning a score function for the
recommendation task and drug discovery, while Zong and Huang
(2013) consider the document retrieval via linear ranking models.

Let H be the hidden layer output m × n matrix [φ(αi, xj)]
and let H i be the m × n matrix [at ]nt=1, where at = (φ(αt , xi),
. . . , φ(αt , xi))T ∈ Rm. Let Y = (yi)mi=1 = (y1, . . . , ym)T be the
target vector, Y i

= (yi, . . . , yi)T , and let Im be the m-order unit
matrix. Denote

A =
2
m

HTH + λIm −
1
m2

m
i=1

(H i)TH −
1
m2

m
i=1

HTH i (5)

and

B =
2
m

HTY −
1
m2

m
i=1

(H i)TY −
1
m2

m
i=1

HTY i. (6)
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