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a b s t r a c t

In 1949 Donald Olding Hebb formulated a hypothesis describing how neurons excite each other and how
the efficiency of this excitation subsequently changes with time. In this paper we present a review of this
idea. We evaluate its influences on the development of artificial neural networks and the way we
describe biological neural networks. We explain how Hebb's hypothesis fits into the research both of
that time and of present. We highlight how it has gone on to inspire many researchers working on
artificial neural networks. The underlying biological principles that corroborate this hypothesis, that
were discovered much later, are also discussed in addition to recent results in the field and further
possible directions of synaptic learning research.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 2014 we commemorate 110 years since the birth of Donald
Olding Hebb and 65 years since the first publication of his influential
book The Organization of Behavior [1]. In the first half of the twentieth
century, one of the most tantalizing questions in the field of mind and
brain research was the problem of how the physiology of the brain
correlates to high level behavior of mammals and especially humans.
Pavlov proposed conditioned reflexes [2] as an explanation of how the
neural excitation line connects the triggered target muscle to some
external excitation along the way. In 1943, McCulloch and Pitts [3]
used ideas coined almost a decade earlier by Turing [4] to formulate
logical calculus as a framework of neural computation. A few examples
of similar hypotheses include that of Jeffress, who during his sabbatical
at California Institute of Technology in 1948 proposed a neural circuit
for sound localization [5]. The proposed circuit was found in birds 40
years later [6]. Similarly, in 1947 Laufberger [7] proposed the idea of

binary (all-or-none) representation and processing of information in
the brain [8]. However this idea was not entirely new and its roots can
be traced back to 1926, to a paper by Adrian and Zotterman [9]. The
mid-twentieth century saw many researchers developing sophisti-
cated hypotheses of how information might be processed by neuronal
circuits in the brain. In 1948, Wiener's book [10] brought the per-
spectives of information theory and signal processing to the field.

During this time, Hebb was working on a theory that would
explain complex psychological behaviors within the framework of
neural physiology. The approach he adopted stemmed from the best
practices used by behavioral psychologists in North America of the
time, dating back some 40 years to William James [11]. To explain
behavior using hypothetical neural computations, Hebb had to make
a few novel assumptions, one of which has become the most cited
sentence of his 1949 book [1]. It is the formulation of the general rule
describing how changes in synaptic weights (also strengths, or
efficiencies) control the way how neurons excite each other: “When
an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one of
the cells firing B, is increased.”

Hebb's simplified formulation of the assumption was deliberate.
Whilst the idea of increasing synaptic efficiency had been pre-
viously presented and the possible underlying chemical and biolo-
gical processes already studied [12], their biological nature was not
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yet known in detail [13]. Using the above postulate allowed Hebb to
develop his theory further without discussing the processes inv-
olved in changing synaptic transmission. A further simplified and
popular version of describing this assumption is “Neurons that fire
together, wire together.”

Today, the phenomena of neural adaptation, training, learning
and working memory seems to be almost a trivial fact present in
our everyday lives as we improve our cognitive skills. By applying
this simple rule in the study of artificial neural networks (ANN) we
can obtain powerful models of neural computation that might be
close to the function of structures found in neural systems of many
diverse species.

This review paper is divided into the following parts: after this
initial introduction, the application of the Hebb rule in selected
neural networks is outlined. This is succeeded by a brief review
discussing how biological synapses, neurons and networks func-
tion, prior to the closing section, consisting of a summary and
future directions. A commented list of relevant web links can be
found in the appendix.

2. Models of neural networks

The above rule that Hebb proposed describes only the way in
which synaptic efficiencies are changed in a dynamic system.
Most artificial neural networks are characterized by two phases
of synaptic change, learning and recall. First, in the learning
phase there are outputs to train the network to achieve a desired
response to a given input. Secondly, in the recall phase the
synaptic efficiencies do not usually change and the network is
only used to calculate the response to a given input, based on the
synaptic efficiencies calculated previously.

Let us illustrate the two phases using the example of the Hopfield
network [14–16]. In this network, the Hebb rule is used in the
iterative learning phase to set up the weights of input patterns
successively stored in the network. This is achieved by mixing the
input and required output of all the neurons in the network with the
first pattern. After this the next pattern is learned. The activity of the
neurons approach the desired values by repeating the learning
procedure. The Hebb rule is repeated in the network to set synaptic
efficiencies accordingly, while the update algorithms may vary.
Finally in the recall phase the weights are no longer adjusted and
the memory retrieval of the network consist of the completed recall
of partial inputs.

The type of learning whereby the required neuron output is used
instead of the actual neuron output to change the synaptic weights
is often called the supervised learning rule. In some cases, instead of
using the neuron output directly, only the difference between the
original and the required output is used during learning. This eli-
minates a change of weights if the neuron already yields the
required output or if it is close to the output value. In contrast,
applying only the changes in synaptic weights based on the actual
neuron activity is called the unsupervised learning rule. In a strict
sense, the Hebb rule in its original formulation did not include
supervised learning as only one synapse from neuron A to neuron B
is increasing its efficiency. In supervised learning there is a third
factor C, which represents the additional input from another source
of information, or the output of B. The efficiency here is the function
of the activity of A, B and C (there are also supervised learning rules
where the activity of B is ignored).

However, the Hebb rule can be utilized by supervised learning. For
example, the idea behind contrastive Hebbian learning is to clamp
output neurons to desired values and then use Hebbian learning rule
to set the weights across the network [17]. Several other supervised
learning rules use mathematical formulations similar to that of the

Hebb rule, therefore we have incorporated them into this review in
particular emphasis on those that have a biological counterpart.

In addition to the term supervised learning, the more general term
of reinforcement learning is often used. From a psychological, or
behavioral point of view, this is any learning whereby its process is
facilitated (reinforced) either by (positively emotionally charged)
reward or by (negatively emotionally charged) punishment [2].
Originating in the behaviorism, the term reinforcement was intro-
duced into the ANN theories by several researchers between the
years 1980 and 1986 [14,18,19]. Reinforcement in ANN means
learning with the use of feedback input. This feedback is usually
binary, signaling only that output is to be accepted or rejected. There
is no information about desired output as in supervised learning.

The neural systems of all higher animals are hierarchically
organized with many levels of connections between the neurons.
Lower level circuits are typical for local, mostly inhibitory inter-
neurons. Unsupervised learning is believed to be more likely
present in these lower level biological cellular circuits and their
mechanisms of learning since fewer conditions are imposed on its
mechanism. Hebb's view on changes in synaptic efficiency con-
siders only local factors acting on corresponding neurons and
synapses. To implement the Hebb rule, there is no need for any
supervision in learning. However, in biological neural networks
(BNN) there exist multiple forms of reinforced feedback that affect
learning and employ both local mechanisms in the circuit and
global, longer range mechanisms. Many examples of biological
feedback connections that change their synaptic weight are found
in the visual pathway, specifically in the retina and visual cortex,
which contain well described hierarchies of feedback connections.
Global hierarchical reinforcement can be described as an abstract
form. This higher level of description also bridges psychology with
biology. From both a psychological and a biological perspective, we
can look at emotions as an example of tagging and reinforcing
memories [20].

2.1. Formulations of Hebb rule

One of the simpler formulations of the Hebb rule can be
written as

τw
dwi

dt
¼ f ðwiÞroutrini ; ð1Þ

where weight wi of the i-th input changes with time t and time
constant τw. This constant includes both the change rate and the
pre-set strength factor. According to the terminology of [21,22],
τ�1
w is a constant in the term correlating post- and pre-synaptic

rates. The right side of this ordinary differential equation contains
an unspecified function of weight f ðwiÞ. rout and rini are the
respective output and input rates. Other equivalent formulations
of the Hebb rule can be found in [21].

Several properties of the Hebb rule are important for its imp-
lementation in ANN. Six properties are summarized by Gerstner and
Kistler [22]: (1) locality, meaning restricting the rule to input and
output neurons of the given synapse (however some supervised
learning rule variants are not local); (2) cooperativity, the requirement
of simultaneous activity of both neurons; (3) boundedness of the
weight values thereby preventing their divergence; (4) competition,
that some synapses are strengthened at the expense of other
synapses that are weakened; (5) long term stability, which is a
natural requirement for the dynamic stability of the neural network
system (this is however only one side of the dilemma of stability
versus plasticity); (6) synaptic depression and facilitation, or weight
decrease and increase, which is perhaps the most important property.

Synapses must be able to change in both directions, or, as is the
case when extremal values occur in biological neurons, when new
connections grow or existing links are disconnected. Obviously,
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