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a b s t r a c t

Non-convex regularization has attracted much attention in the fields of machine learning, since it is
unbiased and improves the performance on many applications compared with the convex counterparts.
The optimization is important but difficult for non-convex regularization. In this paper, we propose the
Damping Proximal Coordinate Descent (DPCD) algorithms that address the optimization issues of a
general family of non-convex regularized problems. DPCD is guaranteed to be globally convergent. The
computational complexity of obtaining an approximately stationary solution with a desired precision is
only linear to the data size. Our experiments on many machine learning benchmark datasets also show
that DPCD has a fast convergence rate and it reduces the time of training models without significant loss
of prediction accuracy.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Regularization is an important way of introducing prior knowl-
edge in machine learning, e.g., the priors of max margin in SVM
and the sparsity in LASSO. From the view of optimization, regul-
arization can be separated into convex and non-convex ones.

Beyond convex regularizers, non-convex regularization is
unbiased for statistical inference [9,10]. Tremendous works have
revealed the superiority of non-convex regularizers in many appli-
cations, e.g., natural image prior with ℓq-regularization (0oqo1)
[12,24,17], model selection with SCAD [9], MCP [27] and Capped-
ℓ1 [29,22] regularization, image inpainting and denoising with
MCP regularization [23], compressed sensing with LSP [5] and ℓq-
regularization [13], robust anisotropic diffusion with Lorentzian
error norm [3].

The optimization of non-convex regularization problems is
usually expensive or even intractable due to their non-convexity.
It cannot be guaranteed to obtain global optimal solutions for
general non-convex regularization problems, but it has been
proved that the local optima are also the exact or well approxi-
mated global optima under proper conditions [27,28,20]. It is

useful for non-convex regularization to propose algorithms that
have the following three good properties:

1. They are suitable for a general family of regularizers. The
regularizers may be highly non-convex and even non-smooth
or non-continuous, e.g., ℓ0-norm.

2. They have global convergence. For arbitrary initial solutions,
the algorithms always converge and the limit points are
stationary points or well approximated stationary points.
Global convergence is not trivial for non-convex optimization,
especially for non-smooth or non-continuous cases, e.g., ℓ0-
regularization. From the view of machine learning, the models
trained by globally convergent algorithms are stable in the
sense that the models do not change a lot after enough
iterations. Stable models cause stable predictions, which is
crucial since we do not hope that the models and the predic-
tion results are significantly changed just because of one more
iteration.

3. They have low computational complexity, e.g., linear time
complexity. Given the desired precision, linear time complexity
means that the computational time for a required solution is
linear to the data size. Linear time complexity, or even lower
ones, makes the algorithms applicable to large-scale datasets.

In this paper, we aim to design the algorithms satisfying the
above three good properties. First, we formalize the regularization
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problems concerned in this paper. We consider the following
regularized linear learning model, which is actually an optimiza-
tion problem:

min
θ

1
n

∑
n

j ¼ 1
lðxTj θ; yjÞþRðθÞ; ð1Þ

where x1; x2;…; xnARp are n samples with their labels y1;…; yn in
the label domain,1 θARp is the parameter that we want to learn
from the samples. lð�; �Þ is called loss function. We also call the
averaged loss function

LðθÞ ¼ 1
n

∑
n

j ¼ 1
lðxTj θ; yjÞ: ð2Þ

as loss function. In Eq. (1), RðθÞ is called a regularizer. In this paper,
we assume that the regularizers are decomposable such that

RðθÞ ¼ ∑
p

i ¼ 1
rðjθijÞ; ð3Þ

where rð�Þ is the basis function of the regularizer. Table 1 lists some
examples of non-convex regularizers and their basis functions. The
basis functions in Table 1 are concave and non-decreasing, which
is called sparsity-inducing regularizers since they usually drive the
solutions of Eq. (1) to be sparse. In this paper, we mainly concern
the sparsity-inducing non-convex regularizers, but the proposed
algorithms, as well as the analysis on the global convergence and
computational complexity, fit for not only sparsity-inducing non-
convex regularizers, but also all the decomposable regularizers.

For simplicity, we denote the objective function of Eq. (1) as

F ðθÞ ¼LðθÞþRðθÞ:
A lot of efficient algorithms have been proposed for convex

regularization problems, e.g., SMO [21] and Coordinate Descent [6]
for SVM, SpaRSA [25] and FISTA [2] for ℓ1-regularization. However,
their analysis on the convergence does not fit for non-convex
regularizers.

Iterative Re-weighted ℓ1 (IRL1) methods, Iterative Shrinkage-
Thresholding Algorithms (ISTA) and Coordinate Descent (CD)
methods are the three main methods for general non-convex
regularization problems.

IRL1 methods use the convex relaxations of the regularizers at
the current points to approximate the original problems [5,29,26].
IRL1 methods iteratively obtain local optimums of the approxi-
mated problems with the convex relaxations of the regularizers
[7]. However, IRL1 methods are usually time-consuming since they
have to solve a sequence of ℓ1-regularized problems, e.g., LASSO
for linear regression. IRL1 methods can also be regarded as DC
programming [14] and Majorization-Minimization [16].

ISTA can be employed to non-convex regularizers in the same
manner as convex regularizers [25,15,19]. However, ISTA is not
always globally convergent. The number of iterations and compu-
tational complexity to obtain a local or approximately local
optimums are still unknown for general non-convex regularizers.

For CD methods, Mazumder et al. [18] and Breheny and Huang
[4] gave a convergence analysis for non-convex regularization, but
their regularizers have a restriction on the “degree of non-
convexity”.2 For example, their analysis cannot be applied to ℓq-
norm (0oqo1) or LSP with γo1. For general non-convex
regularizers, it still lacks guarantees for global convergence. In

fact, the original CD may get stuck at a non-stationary point for
non-smooth objective functions. The Proximal Coordinate Descent
(PCD) [20] overcomes the stuck problem for sparse linear regres-
sion problems, but PCD needs Oðp3Þ iterations for an approxi-
mately stationary solutions, which is not suitable for large-scale
problems. Like CD, PCD is also not globally convergent without the
restriction on the “degree of non-convexity”.

If not restricted to special regularizers, IRL1, ISTA and CD have
the drawbacks of heavy computational complexity and not being
globally convergent. In this paper, we propose the Damping
Proximal Coordinate Descent (DPCD) to give an algorithm that is
applicable for a wide range of regularizers with global conver-
gence and low computational complexity.

DPCD algorithms only update one dimension of the parameter
in the manner of coordinate descent. Instead of directly optimizing
the original objective functions in Eq. (1), DPCD algorithms replace
the loss function with a quadratic approximation at the current
point. More importantly, we further propose the damping penali-
zation to guarantee the global convergence, as well as a fast
convergence rate.

The convergence of DPCD does not need the convexity of the
loss functions or the regularizers. DPCD algorithms are suitable for
many existing loss functions and regularizers. The loss functions
include the loss of L2-SVM (squared hinge loss) [11], linear
regressions, logistic regressions and neurons (sigmoid functions).
The regularizers can be set as all the regularizers in Table 1,
including the highly non-convex regularizer ℓ0-norm.

Theorem 1. For any initial solution, DPCD algorithms are always
convergent, i.e., global convergence. For any ϵ40, DPCD algorithms
only need Oð#nz=ϵ2Þ time to give a solution θ̂ with ‖∇F ðθ̂Þ‖1oϵ,
where #nz is the number of the non-zero components of all the
samples.

Theorem 1 assumes the differentiability of the loss function
and the regularizer. Section 3 will give more general analysis for
the non-differentiable cases, where the global convergence still
holds and the time complexity remains the same.

The time complexity of DPCD is linear to the data size given the
approximately stationary precision ϵ. In our implementation,
DPCD only accesses the non-zero elements of the samples. Thus,
the time complexity can be tightened to Oð#nz=ϵ2Þ, where #nz is
the number of non-zero components of all the samples.

We also test DPCD algorithms on many real-world datasets in
Section 4. Compared to the related algorithms in the experiments,
DPCD algorithms have faster convergence rates. It takes less time
for DPCD algorithms to train a model with good prediction results
than the related algorithms.

2. Algorithm

Following the idea of coordinate descent, we update only one
component (or dimension) of the parameters each time. However,
the updating is not performed by minimizing the original function
in Eq. (1). Directly minimizing the original function has the stuck
problem of CD algorithms and such minimizing may also be a
difficult problem to solve. Instead, we minimize an approximation
of the function at the current points.

Let θðkÞ ¼ ðθðkÞ
1 ;…;θðkÞ

p Þ be the solution of DPCD algorithms after the
k-th iteration. During the k-th iteration, DPCD algorithms update the
component θðk�1Þ

i to θðkÞ
i from i¼1 to i¼p. During the k-th iteration,

the current point before updating θðk�1Þ
i is denoted as

zðk;iÞ ¼ ðθðkÞ
1 ;…;θðkÞ

i�1;θ
ðk�1Þ
i ;…;θðk�1Þ

p ÞT : ð4Þ

1 Different problems have different label domains, e.g., the label domain of
linear regression is R and the label domain of binary classification is f1; �1g.

2 Mazumder et al. [18] and Breheny and Huang [4] focused on sparsity-
inducing regularizers which are regarded as approximations to ℓ0-norm. The
degree of non-convexity is actually the degree of approximation to ℓ0-norm. The
degree of non-convexity is controlled by the parameters of regularizers, e.g., the γ
of LSP. Also, ℓ0-norm is treated as the most non-convex case.
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