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a b s t r a c t

The existing studies involving matrix or tensor completion problems are commonly under the nuclear
norm penalization framework due to the computational efficiency of the resulting convex optimization
problem. Folded-concave penalization methods have demonstrated surprising developments in sparse
learning problems due to their nice practical and theoretical properties. To share the same light of
folded-concave penalization methods, we propose a new tensor completion model via folded-concave
penalty for estimating missing values in tensor data. Two typical folded-concave penalties, the minmax
concave plus (MCP) penalty and the smoothly clipped absolute deviation (SCAD) penalty, are employed
in the new model. To solve the resulting nonconvex optimization problem, we develop a local linear
approximation augmented Lagrange multiplier (LLA-ALM) algorithm which combines a two-step LLA
strategy to search a local optimum of the proposed model efficiently. Finally, we provide numerical
experiments with phase transitions, synthetic data sets, real image and video data sets to exhibit the
superiority of the proposed model over the nuclear norm penalization method in terms of the accuracy
and robustness.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that tensors are the higher-order general-
ization of vectors and matrices. There are many applications of
tensors in physics, imaging, and information sciences. Especially,
the problem of estimating missing values in tensor visual data
arises in a number of computer vision and graphics applications,
such as image inpainting [1], video inpainting [2], scan completion
[3], etc. All these applications can be formulated as the so-called
tensor completion problem. The core of tensor completion problem
lies in how to build up an relationship between the known and
unknown elements.

Two kinds of relationships, the local relationship and the global
relationship, lead to two typical types of approaches for solving the
tensor completion problem. The local relationship approaches assume
that the missing entries depend on their neighborhoods and locally
estimate the unknown values on basis of some difference measure

between the adjacent entries. In contrast, the global relationship
approaches fill in the missing entries by using global information,
which is the strategy we will adopt in this paper.

Following [4,5], we first fix our notations and define the
terminology of tensors used in this paper. The upper case letters
are for matrices, e.g., X, and the lower case letters are for the
entries, e.g., xi;j. σiðXÞ denotes the i-th largest singular value and
σðXÞ denotes the singular vector of matrix X. The Frobenius norm
of the matrix X is defined by ‖X‖F ¼ ðΣ i;jjxi;jj2Þ1=2. And the nuclear
norm is defined by ‖X‖n ¼Σ iσiðXÞ. We denote the inner product of
the matrix space as 〈X;Y〉¼Σ i;jXi;jYi;j. An N-order tensor to be
recovered is defined by XARI1�I2�⋯�IN , and its elements are
denoted by xi1 ;…;iN , where 1r ikr Ik, 1rkrN; and an observed
N-order tensor is defined by T . The “unfold” operation along the
k-th mode on a tensor X is defined by unfoldkðX Þ≔X ðkÞA
RIk�ðI1 ;…;Ik� 1 Ikþ 1⋯IN Þ, and the opposite operation “fold” is defined
by foldkðX ðkÞÞ≕X . We also denote ‖X‖F ¼ ð∑i1 ;…iN jxi1 ;…;iN j2Þ1=2 as the
Frobenius norm of a tensor X . Denote ri as the rank of X ðiÞ. For
more details of tensor, see an elegant review [5].

Tensor completion via the global relationship approach assumes
that the tensor X is sparse in the sense that each unfolding matrix
X ðkÞ is low rank. Mathematically, tensor completion can be formu-
lated as the following optimization problem:

min
X

∑
N

i ¼ 1
αiRankðX ðiÞÞ
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s:t: XΩ ¼ T Ω; ð1:1Þ
where X and T are N-order tensors, X ðiÞ is a mode-i unfolding matrix,
αi's are constants satisfying αiZ0 and∑N

i ¼ 1αi ¼ 1, and the elements
of X and T in the set Ω are observed while the remainings are
missing. The missing elements of X will be completed by making the
rank of each mode-i unfolding matrix as small as possible. It is not
hard to see that the tensor completion problem is a natural general-
ization of the well-studied matrix completion problem [6,7]. Because
such optimization problem is a difficult nonconvex problem due to
the combination nature of the rank function, Liu et al. [4] applied the
matrix nuclear norm ‖ � ‖n to approximate the rank of unfolding
matrices. The advantage of such replacement is that the nuclear norm
is the tightest convex envelop of the rank of matrices. This leads to
the following convex optimization problem for tensor completion:

min
X

∑
N

i ¼ 1
αi‖X ðiÞ‖n

s:t: XΩ ¼ T Ω: ð1:2Þ
Liu et al. [4] also defined the tensor nuclear norm by
‖X‖n≔∑N

i ¼ 1αi‖X ðiÞ‖n. It is obvious that the tensor nuclear norm is
a convex combination of the nuclear norms of all matrices unfolded
along eachmode. With this new notion, (1.2) then can be rewritten as

min
X

‖X‖n

s:t: XΩ ¼ T Ω: ð1:3Þ
Following Liu's seminal work [4], an increasingly growing inter-

est concentrates on the tensor completion study. Overall, the new
published literature can be coarsely classified into two aspects, i.e.,
the algorithm design and the model innovation. From the algorithm
design point of view, many new algorithms have been developed for
the tensor completion model (1.3) and its variants. To name a few,
Gandy et al. [8] developed two typical algorithms based on the
Douglas–Rachford splitting technique and its dual variant, the
alternating direction method of multipliers (ADMM). Tomioka
et al. [9] discussed the different variants for the tensor nuclear
norm based on the matrix nuclear norm and designed the corre-
sponding algorithms based on ADMM. Yang et al. [10] employed the
variable splitting technique and the augmented Lagrangian method
to design a new algorithm and gave a rigid convergence analysis. In
[11], they further extended fixed-point continuation method from
matrix completion to tensor completion. Xu et al. [12] extended
LMaFit for matrix completion to tensor completion. Kressner et al.
[13] proposed a new algorithm that performs Riemannian optimiza-
tion techniques on the manifold of tensors of fixed multi-linear
rank. Signoretto et al. [14] studied a learning framework with
tensors and developed a hard completion algorithm for the tensor
completion problem. Krishnamurthy and Singh [15] developed an
efficient algorithm for tensor completion using the adaptive sam-
pling technique. Although many excellent algorithms currently
have been designed for the tensor completion model (1.3) and its
variants, this model and its variants claim many drawbacks.
Romera-Paredes and Pontil [16] proposed a new tighter convex
relaxation for tensor completion. Yuan and Zhang [17] in the recent
work proposed a new formulation of tensor nuclear norm based on
the duality of spectral norm and made an elegant theoretical
analysis. Zhang et al. [18] proposed a new definition of tensor
nuclear norm based on t-SVD decomposition. Based on Kronecker
tensor decomposition (KTD), Phan et al. [19] proposed a novel
recovery model for tensor completion. Rauhut et al. [20] adopted an
efficient algorithm based on truncated hard thresholding in hier-
archical tensor representations for tensor completion and provided
partial convergence results. Considering the fact that matrix nuclear
norm is prone to over-penalize those large singular values, and
thus usually leads to a biased estimation, we will utilize the
folded-concave penalization techniques to partially overcome this

shortcoming. Our work will complement the current research for
tensor completion from the viewpoint of model.

More precisely, note that the rank function of a matrix can be
related to the l0-norm of a vector and the nuclear norm of a matrix
can be related to the l1-norm. It is commonly known that, the l0-norm
is the essential measure of sparsity, and the l1-norm can only be seen
as its best convex relaxation form. Several studies [21–23] have
shown that the l1-norm (or LASSO) penalty over-penalizes large
entries of vectors, and usually cannot avoid modeling bias. Moveover,
the relationship between the l1-norm and the nuclear norm implies
also that the nuclear norm over-penalizes large singular values, and
thus the modeling bias phenomenon also exists in low rank structure
estimation with nuclear norm penalty [24]. Even though a line of
works [4,8] illustrate the power of the nuclear norm penalization for
the low-rank tensor completion problem, there are some specific
applications that the nuclear norm penalization method cannot
provide desirable results. As shown in Fig. 1, when the missing
entries is relatively large, the tensor nuclear norm penalization
method cannot obtain good results. A natural question is that can
we find an alternative penalization approach to overcome this draw-
back? Fig. 1 (f) provides an affirmative answer. It is shown that the
SCAD based approach could obtain a near-optimal recovery result.

Recently, nonconvex penalties have been drawn more and more
attention in sparse learning problems, because people believe that one
of possible solutions of nonconvex penalization problem could over-
come the drawbacks of the unique solution of convex penalization
problem. As a common practice, the l1-norm can be replaced by the
lq-norm with 0oqo1 if a more sparse solution is expected to be
obtained [25,26]. However, no theoretical guarantee with lq-norm is
made for reducing the modeling bias of LASSO. Fortunately, the
folded-concave penalization such as SCAD and MCP have been
proposed and show nice nearly unbiased property through numerous
numerical and theoretical studies [23,27–29]. Furthermore, [30,31]
have used the MCP penalization approach in various low-rank
structure learning applications, where comprehensive numerical
results demonstrated the outperformance over the nuclear norm
penalization approach.

In this paper, encouraged by the nice properties of folded-
concave penalty, we propose a general nonconvex formulation for
the tensor completion problem on basis of the folded-concave
penalization. This new formulation naturally extends the folded-
concave penalty from vector cases to tensor cases. We denote by
Pλð�Þ a general folded-concave penalty function. More details of
this function will be presented in Section 2. As such, we suggest
the use of the following model for tensor completion:

min
X

∑
N

i ¼ 1
αi‖X ðiÞ‖Pλ

s:t: XΩ ¼ T Ω; ð1:4Þ

where ‖X ðiÞ‖Pλ ¼∑ri
j ¼ 1PλðσjðX ðiÞÞÞ, here σjðX ðiÞÞ is the j-th nonzero

singular value of mode-i unfolding matrix X ðiÞ. Similarly, we define
the tensor folded-concave norm by ‖X‖Pλ≔∑N

i ¼ 1αi‖X ðiÞ‖Pλ . It is
clear that (1.4) is a nonconvex optimization problem, and thus
there exist multiple local minimizers in general. However, based
on the “bet-on-folded-concave-penalization” principle [29], the
local linear approximation (LLA) algorithm can find a good
estimator of (1.4) as long as there exists a reasonable initial
estimator. Therefore, by combining the LLA algorithm and the
augmented Lagrange multiplier (ALM) method, we can derive an
efficient algorithm for computing a specific local solution of the
optimization problem (1.4). The contributions of this work are
summarized as

� To alleviate the modeling bias of the nuclear norm, we propose
a general folded-concave penalization approach for the tensor
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