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a b s t r a c t

Machine learning has been used in network traffic classification and statistical features are used to
represent flows. However, conventional feature selection may work out in face of dynamic and complex
traffic data. Multi-Task Learning has obtained quite wide attention nowadays, and one important form of
multi-task learning is to exploit the features shared by tasks by sparse models. We propose a fast multi-
task sparse feature learning method, using a non-convex Capped-ℓ1;ℓ1 as the regularizer to learn a set of
shared features in traffic data. Specifically, the non-convex multi-task feature learning model can learn
features belonging to each task as well as the common features shared among tasks. We use the iterative
shrinkage and thresholding (IST) algorithm to solve the problem, which has a closed-form solution for
one of the crucial steps in the whole iteration. Experiment on real traffic data captured from backbone
network as well as synthetic data and other popular real-world data show the effectiveness the method,
compared with state-of-the-art methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fast and accurate traffic identification is a fundamental interest for
ISP and enterprise networks operators. Traditional techniques includ-
ing port based or packet-level methods cannot meet requirement due
to the continued development of the Internet with various web-based
applications. For example, the popularity of P2P application using
dynamic ports makes port-based identification invalid. Driven by the
practical demands, flow-based traffic identification has become an
important issue in the network community. In recent years, machine
learning (ML) has been intensively used in network traffic anomaly
detection as well as general classification [32,26,45,37,44]. As the ML
algorithms are introduced to network traffic flow related problems,
how to illustrate a single flow is crucial. Statistical features such as
packet length and inter-arrival time as well as other min–max values
of key characters have achieved much attention. A popular feature set
(or called discriminators) by Moore [33,4] is widely used for machine
learning algorithms which contains 248 features derived from packet
headers.

The statistical features are based on the experience and back-
ground knowledge of experts, and all features are regarded equally
and there is no tradeoff between few features for efficiency and
more features for sufficiency. Previous literatures usually focus on
the application of ML algorithms like SVM, Bayesian Networks, C4.5

Decision Trees etc., and many either use insufficient features or
utilize primary feature selection/reduction methods such as forward
and backward search [28]. Others adopted consistency-based or
correlation-based filtering methods [37,29] to select the approxi-
mately optimal subset of features. Some of these methods rely on a
certain metric, and only empirical studies have been reported.
Moreover, conventional feature selection may just work under
certain circumstances, and the selected feature cannot cope with
dynamic traffic from multiple periods. Other feature reduction
techniques like PCA could make the model less interpretable. The
traffic data from a dynamic network actually involves multiple tasks
instead of a single one. Furthermore, it may be hard to cover
different features in certain period, i.e a single task when training
data are needed. Conventional learning or feature selection may fail
to capture some essence features of traffic in this case, thus we need
other models. Roughly two techniques can cope with this stream
data: incremental (online) learning and multi-task learning. This
paper focus on the latter one.

Multi-task learning (MTL) [8] aims to improve learning ability by
using multiple related tasks which may share common information.
Here multiple tasks may have something in common while differ
from each other due to various reasons. Thus the multi-task assump-
tions may meet the dynamic network traffic flow in practice. The
common information contained in multiple tasks were exploited as
hierarchical prior of Bayesian models [48], hidden nodes in neural
networks [8], relational knowledge [41], predictive structure [1] and a
subset of relevant features [3,24,31,11,15,19]. There are successful
applications adopting multi-task learning in a wide range of areas
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such as rank for web search [10], diagnosis of disease [58,53],
audiology [6] and near infrared spectroscopy [9].

Among these methods, learning a subset of relevant features has
received a lot of interests, and the so-called multi-task feature
learning is exactly defined to learn a few common features across
the tasks [2,3], and the well known ℓ1 norm regularizer controls the
number of features shared by all tasks. For example, the ℓ2;1�norm
penalty [30] makes the entries in a column of a feature matrix either
zeros or non-zeros, thus selecting features shared by all the tasks.
Moreover, different from simply feature selection, the multi-task
feature learning acquires the learning model at the same time.
Furthermore, the number of tasks where each feature is shared is
also an criterion of the importance of the feature. The general
paradigm for classification and regression which minimizes the
combination of empirical loss and the regularizer is still suitable
for multi-task feature learning, and kinds of novel regularization
help to work out the relationships among tasks. Thanks to the
mature techniques for convex optimization, the convex multi-task
feature learning models have been intensively explored.

In order to exactly reflect the commonness as well as the
individuality among multiple tasks in a dynamic network, we need
to learn features beyond a common set. From this perspective, some
non-convex regularizers may help to uncover more important
information compared with widely used convex regularizers. Accord-
ing to an intuitive explanation, a class of non-convex regularizers
sometimes can approximate ℓ0 norm better thus could capture the
sparse structure. In other words, non-convex penalties are more
flexible in terms of extracting features among multiple tasks. In this
paper, we exploit the non-convex capped-ℓ1;ℓ1 regularizer model
[17] learn the features specific to each task as well as the common
features shared among tasks.

Solving a general non-convex optimization problem can be
challenging. Gong et al. [18] recently proposed a general iterative
shrinkage and thresholding (GIST) algorithm for a class of non-convex
penalties, which has a closed-form solution for many used penalties
including Capped-ℓ1 that is very similar to the Capped-ℓ1;ℓ1 we used
in this paper. Inspired by the GIST framework, we propose an IST
algorithm to solve multi-task feature learning (ISTMTFL) problems
with the non-convex regularizer Capped-ℓ1;ℓ1. The key idea is to
solve a group of independent non-convex optimization problems by
taking the advantage of the separability of original problem; these
subproblems have the same form and one of the crucial step of the
iterations turns to have a closed-form solution. And because of the
separability, the method is easy to be parallelized thus can cope with
large scale data. We use the proposed methods to learn a set of
important features of real traffic data captured from backbone
network. Other experiments on both synthetic data and real-world
data show the efficiency of the proposed algorithm compared with
state-of-the-art methods. In this paper, our main contributions can be
summarized below:

� Propose an iterative shrinkage and thresholding for a non-
convex multi-task feature learning problem.

� Apply the proposed model to learn common features among
multiple traffic classification tasks.

� Point out the parallelization prospect and analyze the compu-
tational complexity of the algorithm.

The remainder of this paper is organized as follows. Section 2
introduces some work on multi-task feature learning and the GIST
framework. We describe the proposed ISTMTFL in Section 3. We
evaluate the methods on traffic flow data and other datasets in
Section 4. Section 5 concludes this paper and some details for
describing the algorithm are provided in the appendix. Table 1 lists
the notations we use in this paper.

2. Related works

The ℓ1 norm regularization technique has widely used in com-
pressed sensing [13] and sparse coding [40,27]. The geometrical
sparse property of ℓ1 norm also makes sparse coding a funda-
mental technique for image classification [46,51,50] as well as
image clustering [49] in recent years. Although most of these
works are carried on single task, it is nature to extend these ideas
to multi-task learning settings [21].

2.1. Multi-task feature learning

For multi-task feature learning, conventional models may
assume that some common features are shared by all tasks
[38,30,22], where the ℓp;q�norm penalty is used to address joint
feature selection. However, many factual situations need a weaker
condition or assumption, for a consideration of robustness. There
probably exists two main ways to decouple the strong relationship
posted on tasks and features. The first class focus on tasks. Robust
multi-task learning tries to distinguish different tasks or find out
outlier tasks by task clustering [23], Gaussian processes [52],
structural regularization [11,16]. The second method starts from
the features and uses various regularizer to control the common
features. Both [24] and [17] have investigated the situation that
certain features can be shared by some tasks but not all tasks. The
convex ℓ1þℓ1;1 and non-convex Capped-ℓ1;ℓ1 regularizers were
used to meet the demands. Theocratical analysis shows that the
non-convex regularizer in the latter case ([17, Remark 11]) could
obtain a better bound under weaker conditions regarding para-
meters estimate error.

Multi-Stage (MS) convex relaxation has been used to solve non-
convex penalties [54,55], which relax the original non-convex
problem to a sequence of convex problems. Recent literature
MSMTFL [17] applies this paradigm to multi-task feature learning
by refining a non-convex problem into a convex one, and the error
bound of MSMTFL could be improved during the multi-stage
iteration. However, these kind of algorithms may involve high
computational costs in the procedure of a sequence of stages, thus
may not be suitable for large scale problems.

In terms of a class of optimization problems consist of convex
penalties and smooth convex loss functions (always required with
Lipschitz continuous gradient), the iterative shrinkage and thresh-
olding (IST) and its accelerated version FISTA [5] or Nesterov's
accelerated gradient method [35,36] have been widely applied to
solve them. Examples include the classical ℓ1-norm regularizer
problem [43] and other variants based on it. These methods
iteratively use the first order Taylor expansion of loss function
plus the original regularizer to approximate the object function,
and then generate the current solution by minimizing a proximal

Table 1
Notations used in this paper.

Notations Descriptions

R The set of real numbers
a A scalar
a A vector
A A matrix
wi The i-th entry of vector w
aij The entry i-th row of vector w
J � J1 The ℓ1-norm of a vector
J � J2 The ℓ2-norm of a vector
JAJF The Frobenius norm of matrix A,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i ¼ 1∑
n
j ¼ 1jaijj2

q
JAJp;q The ℓp;q�norm of matrix A, ∑i ð∑jjaijjqÞ1=q

� �p� �1=p

:n The pairwise operator, w¼ u:nv, then wi ¼ uivi
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