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a b s t r a c t

This paper presents a recurrent neural network to support vector machine (SVM) learning in pattern
classification arising widespread applications in a variety of setting. The SVM learning problem in
classification is first converted into an equivalent quadratic programming (QP) formulation, and then a
recurrent neural network for SVM learning is proposed. The proposed neural network is guaranteed to obtain
the optimal solution of support vector classification. It is also shown that the proposed neural network model
is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the QP problem.
Several illustrative examples are provided to show the feasibility and the efficiency of the proposed method in
this paper.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that support vector classification (SVC) problems
arise in a wide variety of scientific and engineering applications [1–9].
In many engineering and scientific applications, such as classification
in complex electromagnetic environments and recognition in medical
diagnostics radar object recognition in strong background clutter [10],
real-time online solutions of the SVC problems are often desired. Over
the years, a variety of numerical optimization algorithms for SVM
learning have been proposed [11–17]. However, these traditional
algorithms may not be applicable for digital computers since the
computing time required for a solution is greatly dependent on the
dimension and the structure of the problem and the complexity of the
algorithm used. For such real-time applications, recurrent neural
networks based on hardware implementation are more competent
[18,19]. Compared with traditional numerical optimization algo-
rithms, the neural network approach has several potential advantages
in real-time applications. First, the structure of a neural network can
be implemented effectively using very large scale integration (VLSI)
and optical technologies. Second, neural networks can solve many
optimization problems with time-varying parameters. Third, the
dynamical techniques and the numerical ODE techniques can be

applied directly to the continuous-time neural network for solving
constrained optimization problems effectively.

The main idea of the neural network approach for an optimiza-
tion problem is to construct a nonnegative energy function and
establish a dynamic system that represents an artificial neural
network. The dynamic system is usually in the form of first-order
ordinary differential equations. Furthermore, it is expected that the
dynamic system will approach its static state (or equilibrium point),
which corresponds to the solution for the underlying optimization
problem, starting from an initial point. An important requirement is
that the energy function decreases monotonically as the dynamic
system approaches an equilibrium point. Because of the dynamic
nature and the potential of electronic implementation, neural net-
works can be implemented physically by designated hardware such
as application specific integrated circuits, where the computational
procedure is truly distributed and parallel [20]. It is well known that
the real-time processing ability of neural networks is one of their
most important advantages [18].

In the past two decades, recurrent neural networks for optimiza-
tion and their engineering applications have been widely investigated
[21–38,40–47]. In particular, neural networks for solving SVMs, which
can be modeled as a quadratic optimization problem, have been rather
extensively studied and some important results have also been
obtained (see [21,36,39,41–43,47]). These papers present several
recurrent neural networks to train SVMs for classification. These
models can also reach the exact saddle point of the QP problem in
SVC problems and are globally stable in the Lyapunov sense. But some
of their structure are rather complicated and further simplification can

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.10.054
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel./fax: þ98 23 32300235.
E-mail addresses: nazemi20042003@yahoo.com (A. Nazemi),

mehrandgn91@gmail.com (M. Dehghan).

Neurocomputing 152 (2015) 369–376

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.10.054
http://dx.doi.org/10.1016/j.neucom.2014.10.054
http://dx.doi.org/10.1016/j.neucom.2014.10.054
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.10.054&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.10.054&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.10.054&domain=pdf
mailto:nazemi20042003@yahoo.com
mailto:mehrandgn91@gmail.com
http://dx.doi.org/10.1016/j.neucom.2014.10.054


be achieved. Moreover, the QP formulation of SVC problems may not
be strictly convex in many applications (see Remark 2.1). There exist
some other networks which can potentially train SVMs for classifica-
tion without strict convexity assumption (e.g., [22–24]). Thus, on the
basis of the above notations, proposing an efficient neural network for
solving the SVC problems with a simple structure, good stability and
convergence results is very necessary and meaningful.

With motivation from the above discussions, in this paper, we
proposed a suitable neural network for analog hardware imple-
mentation which gives a good solution of SVC learning. According
to the Karush–Kuhn–Tucker (KKT) optimality conditions of convex
programming, a neural network model for solving the QP for-
mulation of SVC will be proposed. The equilibrium point of the
proposed neural network will be proved to be equivalent to the
KKT point of the QP formulation. The existence and uniqueness of
an equilibrium point of the proposed neural network will also be
analyzed. By constructing a suitable Lyapunov function, a sufficient
condition to ensure the existence and global asymptotical stability
for the unique equilibrium point of the proposed neural network
will be obtained. The proposed neural network model has also
been successfully used for solving the minimax problem [31],
geometric programming problem [32], maximum flow problem
[34] and shortest path problem [35].

The remainder of this paper is organized as follows. In Section 2,
we briefly describe the learning problem of SVMs for classification. In
Section 3, the system model for SVC problem and some necessary
preliminaries are given. The stability and convergence of the proposed
neural network are studied in Section 4. Numerical simulations are
provided in Section 5. Finally, some concluding remarks are given in
Section 6.

2. Problem setting

Given a training set of input–target pairs

D¼ fðx1; y1Þ; ðx2; y2Þ;…; ðxN ; yNÞg;

where the ith sample xiARn (n is the dimension of the input
space) belongs to two separate classes labeled by yiAf�1;1g. The
classification problem is to find a hyperplane in a high dimen-
sional feature space Z, which divides the set of examples in the
feature space such that all the points with the same label are on
the same side of the hyperplane [1,2].

The SVM classification technique requires the solution of the
following convex quadratic programming problem [3]:

minimize 1
2 α

TGα�eTα ð1Þ

subject to
yTα¼ 0;
0rαrce;

(
ð2Þ

where αARN ; G is a N�N positive semidefinite matrix, eARN is
the vector of all ones, yAf�1;1gN and the parameter c40 is a
user-defined constant to control the tradeoff between the max-
imization of the margin and the minimization of errors. The
generic element gij of the matrix G is given by yiyjKðxi; xjÞ; where
Kðxi; xjÞ ¼ ϕðxiÞϕðxjÞ is called kernel function related to the non-
linear function ϕ that maps the data from the input space into the
feature space. The most widely used kernels are the following:

� linear: Kðx; yÞ ¼ xTy;
� polynomial: Kðx; yÞ ¼ ðγxTyþrÞd; with γ40;
� Gaussian: Kðx; yÞ ¼ expð�‖x�y‖2=2δ2Þ; with δ40;

where γ; r; d; δ are kernel parameters.
The support vector classification technique is to find an optimal

decision function of the classifier given by

f ðxÞ ¼ sgn ∑
N

i ¼ 1
αiyi:Kðxi; xÞþβ

" #
;

where fαig is an optimal solution of the QP (1) and (2) and β is
given by an average over all of the support vectors in S as

β¼ 1
Ns

∑
sA S

ys� ∑
mA S

αmymKðxm; xsÞ
� �

; ð3Þ

where S is determined as the set of support vectors by finding the
indices such that 0oαrce (see [4]). Therefore, the learning
problem in SVC is equivalent to the QP problem in (1) and (2)
with N bounded variables. The problem (1) and (2) is referred to as
the dual formulation of the SVM.

Remark 2.1 (Yang et al. [47]). In many applications, G may not be
positive definite. For instance, in linear SVM, Kðxi; xjÞ ¼ xTi xj and G
can be written as AAT where A¼ ðy1x1; y2x2;…; yNxNÞT ARN�M :

When N4M; which is often the case in practice, rankðGÞoN and
G is a positive semidefinite only. For another instance, it is easy to
show that when there are repeated samples in the training set, G is
singular and thus positive semidefinite only.

3. A neurodynamic model

In this section, based on an equivalent QP formulation in SVC,
we propose a neural network for the SVC problem. Thus, we
consider a general form of the quadratic programming problems
given by

minimize 1
2 x

TQxþDTx ð4Þ
subject to

Ax�br0; ð5Þ

Ex� f ¼ 0; ð6Þ
where QARn�n is only a symmetric and positive semidefinite
matrix i.e. νTQνZ0; 8ν ða0ÞARn;AARm�n, bARm, EARl�n;

f ARl; xARn and rankðA=EÞ ¼mþ l ð0rm; lonÞ:

Theorem 3.1 (Bazaraa et al. [48]). xnARn is an optimal solution of
(4)–(6) if and only if there exist unARm and vnARl such that
ðxnT ;unT ; vnT ÞT satisfies the following Karush–Kuhn–Tucker (KKT)
system:

unZ0; Axn�br0; unT ðAxn�bÞ ¼ 0;
QxnþDþATunþETvn ¼ 0;
Exn� f ¼ 0:

8><
>: ð7Þ

Theorem 3.2 (Bazaraa et al. [48]). xn is an optimal solution of
(4)–(6), if and only if xn is a KKT point of (4)–(6).

Now, let xð�Þ;uð�Þ and vð�Þ be some time dependent variables. A
neural network model for solving (4)–(6) and its dual is proposed
as

dx
dt

¼ �ðQxþDþAT ðuþAx�bÞþ þETvÞ; ð8Þ

du
dt

¼ ðuþAx�bÞþ �u; ð9Þ

dv
dt

¼ Ex� f ; ð10Þ
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