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a b s t r a c t

A reduced order state estimator based on recurrent high-order neural networks (RHONN) trained using
an extended Kalman filter (EKF) is designed for the magnetic fluxes of a linear induction motor (LIM).
The proposed state estimator does not need the mathematical model of the plant. This state estimator is
employed to obtain the unmeasurable state variables of the LIM in order to use a state feedback
nonlinear controller. A neural inverse optimal control is implemented to achieve trajectory tracking for a
position reference. Real-time implementation results on a LIM prototype illustrate the applicability of
the proposed scheme.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mostly nonlinear state-feedback controllers require system
state complete accessibility, which is not always achievable; for
this reason, nonlinear state estimation is an important topic.
Important applications for nonlinear state estimation are: deter-
ministic and stochastic control [1,2], system modeling [3], fault
diagnosis [4,5], and among others. There exists many results for
the design of nonlinear state estimators [6,7]; however, these
methods do not consider uncertainties [3]. Other studies have
offered results on the design of robust nonlinear state estimators
[8,9], which still depend on the system model. For real-time
applications, a state estimator-controller based on the model of
the system may not behave as desired because uncertainties
there are always internal and external disturbances, changing
parameters and unmodeled dynamics. Neural networks have
been established as an appropriate methodology for nonlinear
function approximation; then, they can be employed for non-
linear system state estimation [10]. The neural network adapts its
synaptic weights in order to adjust its outputs to the system
response [11].

These facts have motivated the development of neural-network-
based state estimators. In recent years, some of these neural state
estimators have been implemented in real-time applications with
successful results. In [12,13], neural state estimators are used to
obtain the unmeasurable states of the system to be controlled;
however, the exact parameters and the mathematical model are
required. In [2,14], neural networks are employed to obtain the
uncertainties and some parameters of the systemmodel, but not the
system states directly; in these cases other parameters of the model
must also be known. In [15], a neural state estimator is implemented
which consists of a neural identifier for the unknown nonlinear
model, and then a conventional Luenberger-like state estimator
estimates the system states. In [16] the neural network employed to
estimate the system states is trained off-line; this approach has the
disadvantage of not being robust against parametric variations.

A different approach for a neural state estimator has been
proposed in [11,17]. There, the state estimator is based on a
recurrent high-order neural network (RHONN), which is a general-
ization of the first-order Hopfield network [22]. A RHONN model is
easy to implement, has relatively simple structure, is able to adjust
its parameters on-line and allows to incorporate a priory informa-
tion about the system structure [23]. When the neural weights are
adapted, the RHONN model dynamics are very similar to the real
system dynamics, even in the presence of disturbances. Neither the
exact mathematical model, nor the exact parameters, are needed to
implement a RHONN.
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Neural networks can be trained by many different algorithms
[24]; however, most of these algorithms normally encounter
technical problems such as local minima, slow learning and high
sensitivity to initial conditions, among others [11]. The Extended
Kalman Filter (EKF) form the basis of a second-order neural
network training method [25], where the synaptic weights
become the states to be estimated. The EKF training algorithm
provides a recursive optimal estimator for the neural weights.

Optimal control of nonlinear systems deals with obtaining a
control law for a given system such that a cost functional is
minimized [26], Dynamic programming, developed by Bellman
[27], is a solution for optimal control which leads to a nonlinear
partial differential equation named as the Hamilton–Jacobi–Bell-
man (HJB) equation. Solving this equation is not straightforward:
for systems of dimension higher than two there are no practical
ways to solve such equation [28]. Inverse optimal control is an
alternative for optimal control synthesis which avoids the need to
solve the associated HJB equation [28,29]. For the inverse
approach, a stabilizing feedback control law, based on a priory
knowledge of a Control Lyapunov Function (CLF), is designed first
and then it is established that this control law optimizes a cost
functional. In this paper, we propose to integrate a reduced order
RHONN state estimator and an inverse optimal control law based
on a CLF for nonlinear systems.

This mentioned control scheme is applied to a linear induction
motor (LIM). The LIM is a linear electric actuator on which the
electrical energy is turned into mechanical translational move-
ment; this is, a mobile element on the motor moves linearly with
respect to a stationary element [30]. Induction motors have been
widely studied and several control approaches have been applied
to them [31–33]. LIMs present advantages with respect to other
types of motors. They develop magnetic forces directly between
the mobile element and the stationary element, without the need
of physical contact between both elements, which would restrict
the system dynamics. Then, LIM can reach higher speed and
reduces undesirables vibrations [30]. For these reasons the LIM
has been employed widely in industrial applications such as steel,
textile, nuclear and space industries [34]. However, the most
extensive application for LIMs is for public transportation by
means of high speed trains. The idea of using linear motors for
mass public transportation is not new. However, the attention is
focused on the LIM again due to recent developments of smart
grids. These are complex systems with unknown uncertainties and
disturbances [35], which cause that the control synthesis can be
very difficult to handle with traditional approaches, requiring the
application of intelligent control ones [17].

Control of Rotational Induction Motor (RIM) has been extensively
studied, which is not the case for LIM, even if driving principles of both
kind of motors are similar. However, recently different control
techniques have been developed for LIM. For instance in [18] an
adaptive backstepping-sliding mode controller is proposed, in [19] a
fuzzy sliding-mode controller is implemented in a field-programmable
gate array, and then in [20] a robust controller is proposed to relax
disturbances requirements with the fusion of an integral-proportional
position control and neural network to estimate disturbances. In [21]
is established a field-oriented control scheme, considering the end
effect. For those controllers the design is developed for continuous-
time and implemented experimentally for position trajectory tracking.
Although, those controllers are robust to uncertainties, they require
previous knowledge of plant model and/or plant parameters at least
their nominal values. Besides, the progresses in digital equipment have
attracted considerable efforts to the design of high performance
discrete-time controllers for continuous-time plants, which has not
been studied deeply as the continuous-time ones [18–21].

The main contributions of the paper are: first a novel inverse
optimal neurocontroller with control gain matrix reduction for

systems that are or can be written in the nonlinear block
controllable form; second, the stability proof on Lyapunov basis
for the proposed controller, then the use of a reduced order neural
observer to relax the full state measurement assumption. Finally
the real-time implementation of the proposed inverse optimal
control scheme and the neural state estimator on a LIM prototype
in order to show the effectiveness of the proposed scheme, for a
nonlinear system under internal and external disturbances which
model, parameters and uncertainties are considered unknown and
with partial state measurements.

In the following, Section 2 presents mathematical preliminaries
for the neural networks state estimation. Section 3 includes the
inverse optimal control basis. In Section 4 the RHONN identifier is
explained. Sections 5 describes the neural inverse optimal control
application for LIM. Section 6 presents the real-time implementa-
tion results and Section 7 exposes the respective conclusions.

2. Neural networks state estimation

Through this paper, subindex k is used as the sampling time,
with kA 0f g [ Zþ .

In this paper, we consider the discrete-time multiple-input
multiple-output nonlinear system

χkþ1 ¼ Fðχk;ukÞ ð1Þ

where χkARn is the state of the system, ukARm is the control
input and f ðχkÞ : Rn-Rn is a smooth map.

2.1. Recurrent high-order neural networks

For practical situations, the mathematical model of the system
to be controlled is usually unknown; then, a RHONN identifier is
employed to obtain a neural model of the system, required for the
implementation of the control law. The discrete-time RHONN
employed for identification of a nonlinear system (1) is defined as

xi;kþ1 ¼wiϕiðxk;ukÞ; i¼ 1;…;n ð2Þ
where xi is the state of the ith neuron, wi is the respective online
adapted weight vector, n is the system state dimension and
ϕiðxk;ukÞ is given by

ϕiðxk;ukÞ ¼

ϕi1
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⋮
ϕiLi
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with Li being the respective number of high-order connections,
I1; I2;…; ILi is a collection of non-ordered subsets of dimension
1;2;…;nþm, m is the number of external inputs, dij is a non-
negative integer and yi is defined as follows:

yi ¼

yi1
⋮
yin
yinþ 1

⋮
yinþm

26666666664

37777777775
¼

Sðx1Þ
⋮

SðxnÞ
u1

⋮
um

26666666664

37777777775
ð4Þ

In (4), uk ¼ ½u1;…;um�T is the input vector to the RHONN and
Sð�Þ is defined by

SðxÞ ¼ tanhðγxÞ ð5Þ
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