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a b s t r a c t

This paper is concernedwith the periodic dynamics of a class of delayed neural networkswith discontinu-
ous neural activation functions. Under the Filippov framework, the cone expansion and compression fixed
point theorems of set-valued maps are successfully employed to derive the existence of the ω-periodic
positive solution. However, before the discussion of the periodicity, there still remains a fundamental
issue about viability to be solved due to the presence of general mixed time-delays involving both time-
varying delays and distributed delays. This difficulty can be overcome by a transformation and the con-
tinuation theorem. Then, for the discontinuous and delayed neural network system with time-periodic
coefficients, the uniqueness and global exponential stability of the periodic state solution are proved by
using non-smooth analysis theory with generalized Lyapunov approach. Furthermore, the global conver-
gence inmeasure of the periodic output is also investigated. The obtained results are a very good extension
and improvement of previous works on discontinuous dynamical neuron systems with a broad range of
neuron activations dropping the assumption of boundedness or monotonicity. Finally, numerical simula-
tions are provided to illustrate the effectiveness of the theoretical results.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuous dynamical neuron systems are important and
frequently arise in a large number of applications (Di Marco, Forti,
Grazzini, Nistri, & Pancioni, 2008; Forti, Grazzini, Nistri, & Pancioni,
2006; Forti & Nistri, 2003; Forti, Nistri, & Papini, 2005; Hopfield,
1984;Huang, Guo, &Wang, 2011; Liu&Cao, 2010; Lu&Chen, 2006;
Papini & Taddei, 2005). Generally speaking, discontinuity in neu-
ral networks is caused by natural phenomenon or control actions
of many interesting engineering tasks. For instance, switching in
electronic circuits, systems oscillating under the effect of an earth-
quake, control synthesis of uncertain systems, sliding or squealing,
power circuits and many others. It is worth noting that discon-
tinuous or non-Lipschitz neuron activations have been introduced
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into neural network systems due to their theoretical and practi-
cal significance in recent years. Take the classic Hopfield neural
networks (HNNs) as an example, the sigmoidal neuron activations
would closely approach a discontinuous hard-comparator function
under the standard assumption of high-gain amplifiers (see Forti &
Nistri, 2003 and Hopfield, 1984). According to such a discontinu-
ous activation, it is often advantageous to model neural networks
possessing high-slope nonlinearities (Hopfield, 1984). In fact, this
class of discontinuous dynamical neuron systems is usually rep-
resented by the first order differential equation with discontinu-
ous right-hand side. In this case, the dynamics will be defined by
discontinuous vector field. Moreover, there will emerge some spe-
cially interesting and important dynamical behaviors that are not
captured by the continuous system, e.g., the phenomenon of con-
vergence in finite time towards the equilibrium point or limit cy-
cle and the presence of sliding modes along discontinuity surfaces
(Cai, Huang, Guo, & Chen, 2012; Forti et al., 2005; Liu & Cao, 2010;
Liu, Liu, & Xie, 2012).

As far as we know, numerous fundamental questions arise
when dealing with discontinuous dynamical systems. The most
basic issue we must face is the notion of solution. However, we
do not know whether the classical definition of solutions is still
valid for the discontinuous system. If not, what is the new frame-
work for the solution, and how do we ensure the global existence
and uniqueness? As pointed out by Cortés (2008), the existence of
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a continuously differentiable solution (i.e., continuously differen-
tiable curve whose derivative follows the direction of the vector
field) is not guaranteed for the discontinuous system. Fortunately,
several types of solutions defined for discontinuous system such as
Filippov solutions, Carathéodory solutions, sample-and-hold solu-
tions, Euler solutions, Krasovskii solutions and Hermes solutions
have been proposed (Clarke, Ledyaev, Stern, &Wolenski, 1998; Fil-
ippov, 1988; Hermes, 1967; Krasovskii, 1963; Krasovskii & Sub-
botin, 1988). In particular, the concept of Filippov solution with
differential inclusion framework has been accepted universally as
a good one to investigate the discontinuous dynamical systems
whose right-hand sides are only required to be Lebesgue measur-
able in the state and time variables. Such a notion of solution in
the sense of Filippov is useful in the field of mathematics espe-
cially for discontinuous dynamical neuron systems. Since a Filip-
pov solution is a limit of solutions of ordinary differential equation
with a continuous right-hand side, one can model a system that
is a near discontinuous system and expect that the Filippov tra-
jectories of the discontinuous system will be close to the trajecto-
ries of the actual system (Lu & Chen, 2008). This approach is very
significant in many applications, such as non-smooth analysis and
variable structure control (see Aubin & Cellina, 1984, Paden & Sas-
try, 1987 and Utkin, 1977). From the theoretical view, under the
Filippov framework, the theory of differential inclusion is a stan-
dard and effective tool to handle the problems of dynamical behav-
iors for differential equations with discontinuous right-hand sides
(discontinuous systems). In the process of simplification of many
practical problems, differential inclusion theory can relax some re-
strictions to the utmost extent, and does not affect the essence
of the problems. In general, any mathematical model of the dy-
namic system containing uncertainties can be represented as a dif-
ferential inclusion equation because uncertainties may lead to a
suddenly change of a trajectory in such a dynamic system. Actu-
ally, the differential inclusion system is considered as a generaliza-
tion of the system described by differential equation. In addition,
the Filippov-framework plays a pivotal role in the analysis of non-
smooth stability for discontinuous systems. The available tools in-
volve matrix theory and a generalized Lyapunov approach based
on locally Lipschitz continuous and regular (C-regular) functions.
In a word, it is necessary and rewarding to study discontinuous dy-
namical neuron systems in the framework of Filippov differential
inclusions.

It should be pointed out that, up to now, a number of research-
ers have investigated the dynamical behaviors of discontinuous
neural networks via differential inclusions. For example, In 2003
and 2005, under the Filippov framework, Forti et al. firstly deal
with the global stability of the unique equilibrium point for neu-
ral networks modeled by differential equations with discontinu-
ous activation functions (Forti & Nistri, 2003; Forti et al., 2005).
Thismotivated the latter studies on discontinuous neural networks
(Forti et al., 2006; Huang et al., 2011; Liu & Cao, 2010; Liu, Liu,
Xie et al., 2012; Lu & Chen, 2005, 2006; Qin & Xue, 2009). Nev-
ertheless, in most of these literatures, the works are based on the
assumption that the discontinuous activation functions are mono-
tonic or bounded and neglect the effect of periodicity. As shown by
Li and Huang (2009), in designing and implementing an artificial
neural network, non-monotonicity might be better candidates for
neuron activation functions. Song (2008) also noted that, for some
applied purposes of networks (e.g., solving optimization problems
in the presence of constraints such as linear, quadratic ormore gen-
eral programming problems), unbounded activations modeled by
diode-like exponential-type functions are needed to impose con-
straints satisfaction. On the other hand, periodic oscillation in neu-
ral networks is an interesting and valuable dynamical behavior.
Since the brain is often in periodic oscillatory or chaos state, it is
of great necessity for us to investigate the periodic oscillatory phe-
nomenon of discontinuous neural networks for understanding the

function of human brain (Cai et al., 2012; Wu, 2009). Nowadays,
more and more scholars observe the importance of periodic prop-
erty for neural networks with discontinuous activations and have
already obtainedmanyuseful results on periodic dynamical behav-
iors (see Huang & Guo, 2009, Huang et al., 2011, Huang, Wang, &
Zhou, 2009, Liu & Cao, 2009, Lu & Chen, 2008, Wu, 2009 and their
references). Here, wemention a conjecture proposed by Forti et al.
(2005)that all solutions of discontinuous neural network systems
converge to an asymptotically stable limit cycle (periodic solution)
in the condition of periodic inputs. Subsequently, this conjecture
has been extensively studied and has been extended to the situ-
ation of constant delay and variable delay (Cai et al., 2012; Liu &
Cao, 2010;Wang, Huang, & Guo, 2009). However, in the case of dis-
tributed delay, there is still not much research on this conjecture.

In practice, time delays in neuron signals are inevitable owing
to internal or external uncertainties. Furthermore, the existence
of time delay is frequently a source of instability and oscillations
for neural network systems (Marcuss & Westervelt, 1989). As
discussed in Hou and Qian (1998), Huang, Ho, and Cao (2005)
and Huang, Ho, and Lam (2005), in electronic implementation of
artificial neural networks, the time delays are usually time variant,
and sometimes vary dramatically with time because of the finite
switch speed of amplifiers and faults in the electrical circuits. On
the other hand, neural networks with discontinuous activations
often have a spatial extent because of the presence of a multitude
of parallel pathways with a variety of axon sizes and lengths.
Then, there will exist either a distribution of conduction velocities
along these pathways or a distribution of propagation delays over
a period of time in some cases, which may cause another type
of time-delays, namely, distributed time delays in neuron signals
(Song & Wang, 2008; Wang, Lauria, Fang, & Liu, 2007). In these
circumstances the signal propagation is not just instantaneous and
cannot be modeled only with discrete delays. Therefore, for the
practical design of neural networks with discontinuous neuron
activations, it is of significance to consider general mixed time-
delays involving both time-varying delays and distributed delays
between neurons. When the time delays are introduced into the
discontinuous neuron activations, we can find that the theory
of functional differential inclusions (i.e., differential inclusions
with memory) is used as a main tool to explore the dynamical
behaviors of neural network systems modeled by time-delayed
differential equations with discontinuous right-hand sides. As
mentioned by Aubin and Cellina (1984), functional differential
inclusions express that the velocity depends not only on the state
of the system at every instant, but depends upon the history of the
trajectory until this instant. We see that, in the framework of the
theory of Filippov differential inclusions, delayed neural networks
with discontinuous activations have been extensively studied (for
example, Allegretto, Papini, & Forti, 2010, Lu & Chen, 2006, 2008,
Qin & Xue, 2009 and Wang et al., 2009). Whereas, most studies
mentioned above consider only a single constant time-delay and
the constant delay is only an idealization of variable delay or an
assumption for simplicity. Forti et al. (see Forti et al., 2005) further
pointed out that itwould be interesting to investigatemore general
discontinuous neural networkmodels of the delay, including time-
varying and distributed ones.

Inspired by the above analysis, taking the more complex and
more general types of time delays into account, we will study
the periodic dynamics of discontinuous neural network systems
via Filippov differential inclusions. The remainder of this paper is
arranged as follows. Section 2 states some preliminaries includ-
ing some necessary definitions and lemmas. Section 3 describes
the neural network model studied in the paper. Our main results
are presented in Sections 4 and 5, where the sufficient conditions
are given to guarantee the existence, uniqueness and global expo-
nential stability for the positive periodic solution. Moreover, the
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