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a b s t r a c t

In this work, a novel supervised learning method, the Minimal Learning Machine (MLM), is proposed.
Learning in MLM consists in building a linear mapping between input and output distance matrices. In
the generalization phase, the learned distance map is used to provide an estimate of the distance from K
output reference points to the unknown target output value. Then, the output estimation is formulated
as multilateration problem based on the predicted output distance and the locations of the reference
points. Given its general formulation, the Minimal Learning Machine is inherently capable of operating
on nonlinear regression problems as well as on multidimensional response spaces. In addition, an
intuitive extension of the MLM is proposed to deal with classification problems. A comprehensive set of
computer experiments illustrates that the proposed method achieves accuracies that are comparable to
more traditional machine learning methods for regression and classification thus offering a computa-
tionally valid alternative to such approaches.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Supervised machine learning methods for regression and classifica-
tion have been designed mostly for data types that lie in vector spaces,
i.e. response (i.e. output) and/or predictor (i.e. input) variables are often
arranged into vectors of predefined dimensionality. There are other
types of data, however, such as graphs, sequences, shapes, images, trees
and covariance matrices, which are less amenable to being treated
within standard regression/classification frameworks. These data types
usually do not lie in a natural vector space, but rather in a metric space.

For this type of data, usually referred to as structured data
[13,16], a more general approach to the characterization of the data
items is to define a distance (or dissimilarity) measure between
data items and to provide a learning algorithm that works with the
resulting distance matrix. Since pairwise distance measures can be
defined on structured objects (e.g. graphs, trees or strings), this

procedure provides a bridge between the classical and the struc-
tural/syntactic approaches to pattern recognition [3,30].

Pairwise distance data occur frequently in empirical sciences,
such psychology, economics, ecology and biochemistry, with most
of the algorithms developed to handle this kind of data falling into
the realm of unsupervised learning, predominantly as clustering
[14,33,12,19] or multidimensional scaling algorithms [34].

For regression tasks, there are some prior works in which the
response and/or the predictor variables are expressed as distance
(i.e. dissimilarity) matrices. Cuadras and Arenas [8] proposed an
approach to regression where only the predictors are expressed as
a distance and classical multidimensional scaling (a.k.a principal
coordinates analysis) [34] is used to generate scores. The response
variable is then regressed on these scores. McArdle and Anderson
[24] performed MANOVA1 on ecological data with only knowledge
of the distance matrix of the response variable. Finally, Lichstein
[22] proposed a modeling approach where both the response and
predictor variables are represented as distance matrices. However,
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since their method converts the distance matrices to vectors in a
column-wise fashion, useful information provided by the geome-
try of the problem is lost.

For classification tasks, we refer the reader to the works of
Hammer et al. [15], Zhu et al. [39] and Graepel et al. [11]. Roughly
speaking, these works introduce extended versions of classification
algorithms for data characterization by means of a matrix of pairwise
similarities or more general dissimilarity measures, rather than
explicit feature vectors. In Hammer et al. [15] the authors propose
a general learning framework that unifies previous attempts of
making LVQ algorithms capable of handling non-vectorial data, such
as kernel GLVQ [31,28] and relational GLVQ [9]. This is possible by
means of a pseudo-Euclidean embedding2 of similarity (or dissim-
ilarity) data, i.e. every finite data set which is characterized by
pairwise similarities or dissimilarities can be embedded in a so-
called pseudo-Euclidean vector space. In Zhu et al. [39] it is proposed
an LVQ-based classifier that, in addition to its ability to directly deal
with arbitrary symmetric dissimilarity matrices, provides confidence/
reliability measures for the classification results. Finally, in the pion-
eering work of Graepel et al. [11], they suggested classification algo-
rithms based on linear models which operate on distance data from
both Euclidean and pseudo-Euclidean spaces.

As mentioned in the previous paragraphs, data characterization
by means of pairwise dissimilarity measures have been associated
with the processing of structured data, either for regression or
classification purposes. However, we argue that the use of dissim-
ilarity measures for data characterization may also be beneficial
for the processing of unstructured data types, by allowing, for
example, a nonlinear learning problem to be tackled by linear
models. Bearing this in mind, we introduce a new supervised
nonparametric method, called the Minimal Learning Machine
(MLM), aiming at the efficient design of distance-based regression
models or pattern classifiers for unstructured data types.

The single assumption of the MLM is the existence of a mapping
between the geometric configurations of points in the input and
output spaces. Based on a set of comprehensive computer experi-
ments, we show that such a mapping can be accurately recon-
structed by learning a multiresponse linear model between distance
matrices. Under these conditions, for an input point with known
configuration in the input space, its corresponding configuration in
the output space can be easily estimated after learning a simple
linear model between input and output distance matrices. The
resulting estimate is then used to locate the output point and, thus,
provide an estimate for the response variable.

One of the main advantages of the MLM is that it requires tuning of
a single parameter, which is the number of reference points (i.e.
training output samples) used to obtain an estimate of the response
variable. Another advantage is that the MLM can nicely handle
nonlinear problems, even being, in essence, a linear model between
distancematrices. The analysis of the results allows us to conclude that
the proposed distance-based method, when applied to standard
vectorial (i.e. unstructured) data types, achieves accuracies that are
comparable to those achieved by standard supervised nonlinear
machine learning methods for regression and classification, such as
themultilayer perceptron (MLP), radial basis functions (RBF) networks,
support vector machine/regression (SVM/SVR) models, extreme learn-
ing machines (ELMs), and Gaussian processes (GP) methods, thus
offering a simpler alternative to these nonlinear approaches.

The remainder of the paper is organized as follows. In Section 2, the
Minimal Learning Machine is presented; the MLM is formulated
(Section 2.1), its properties are discussed (Section 2.2), a simple

extension for classification tasks is introduced (Section 2.3), the
links with related works are briefly reported (Section 2.4), and two
illustrative examples are presented (Section 2.5). In Section 3, a
thorough experimental assessment of the Minimal Learning Machine
is conducted to evaluate its performance and to compare it with state-
of-the-art approaches in regression and classification problems.

2. Minimal Learning Machine

In this section, we start by introducing the basic formulation of
the Minimal Learning Machine (MLM).

2.1. Formulation

We are given a set of N input points X ¼ fxigNi ¼ 1, with xiARD,
and the set of corresponding outputs Y ¼ fyigNi ¼ 1, with yiARS.
Assuming the existence of a continuous mapping f : X-Y between
the input and the output space, we want to estimate f from data
with the multiresponse model

Y¼ f ðXÞþR:

The columns of the matrices X and Y correspond to the D inputs
and S outputs respectively, and the rows to the N observations. The
columns of the N � S matrix R correspond to the residuals.

The MLM is a two-step method designed to

1. reconstructing the mapping existing between input and output
distances;

2. estimating the response from the configuration of the output
points.

In the following, the two steps are discussed.

2.1.1. Distance regression
For a selection of reference input points R¼ fmkgKk ¼ 1 with RDX

and corresponding outputs T ¼ ftkgKk ¼ 1 with TDY , define
DxARN�K in such a way that its kth column contains the distances
dðxi;mkÞ between the i¼ 1;…;N input points xi and the kth
reference point mk. Analogously, define ΔyARN�K in such a way
that its kth column contains the distances δðyi; tkÞ between the N
output points yi and the output tk of the kth reference point. The
mapping g between the input distance matrix Dx and the corre-
sponding output distance matrix Δy can be reconstructed using the
multiresponse regression model

Δy ¼ gðDxÞþE:

The columns of the matrix Dx correspond to the K input vectors and
the columns of the matrix Δy correspond to the K response vectors,
the N rows correspond to the observations. The columns of the N �
K matrix E correspond to the K residuals.

Assuming that mapping g between input and output distance
matrices has a linear structure for each response, the regression
model has the form

Δy ¼DxBþE: ð1Þ
The columns of the K � K regression matrix B correspond to the
coefficients for the K responses. The matrix B can be estimated
from data through a minimization of the multivariate residual sum
of squares as loss function:

RSSðBÞ ¼ tr ðΔy�DxBÞ0ðΔy�DxBÞ
� �

: ð2Þ
Under the normal conditions where the number of equations in
Eq. (1) is larger than the number of unknowns, the problem is
overdetermined and, usually, with no solution. This corresponds to
the case where the number of selected reference points is smaller

2 Non-Euclidean dissimilarities arise naturally whenwe want to build a measure
that incorporates important knowledge about e.g. the relation between objects to be
classified. Pseudo-Euclidean embedding allows one to embed such dissimilarities in
a vector space in order to use standard (Euclidean) classification tools.
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