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a b s t r a c t

This paper presents the construction of a numerical method for implementing algorithms that are based
on a gradient flow. In particular, continuous Hopfield networks for solving optimization problems are
considered as a case in point. The focus is the preservation of the favourable properties of the continuous
system under discretization. Firstly, the conventional discretization is formulated as a non-standard
numerical method that solves the continuous equation, depending on the step size. A rigourous
theoretical analysis shows that it is a consistent method, but it fails to preserve the gradient nature, since
periodic solutions occur, so no Lyapunov function can exist. Next we present the construction of a
method that preserves the Lyapunov function of the original differential equation regardless of the step
size. This procedure, based upon discrete gradients, yields an algorithm that preserves the Lyapunov
function of the continuous system, thus reproducing the same qualitative behaviour, namely stability of
equilibria and convergence to solutions. A remarkable property of the proposed technique is that it can
be computed explicitly as long as the Lyapunov function is multi-linear, which is the case of Hopfield
neural networks. This results in enhanced performance, compared to the conventional discretization, as
shown in a comprehensive set of numerical experiments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The concept of gradient is a key element of many algorithms that
are formulated in continuous time, both in machine learning and in
conventional mathematics. Most often, the field of application of such
gradient algorithms involves some sort of optimization, which is hardly
surprising since, in the end, evolving according to the gradient of a
function amounts to tracking a downwards trajectory of that function,
thus performing its minimization. Some examples include back-
propagation [1], conjugate gradient [2], recurrent neural networks
[3], parameter estimation [4,5], and optimization in manifolds [6]. The
computer implementation of these continuous algorithms, usually
formulated as Ordinary Differential Equations (ODEs), requires them to
undergo discretization, which will possibly destroy the dynamical
properties. Therefore we propose that research on continuous algo-
rithms should proceed through three stages: analysis of the contin-
uous system, discretization, and finally, implementation issues, choice
of design parameters, and problem-dependent heuristics. In this

regard, continuous Hopfield networks are paradigmatic: on one hand,
they were applied to combinatorial optimization shortly after their
inception [7] and their performance for particular problems has been
extensively analysed (e.g. [8] and references therein); on the other
hand, a great many theoretical results have been published on the
continuous network [9], as well as different variants, e.g. systems with
delays [10]. This paper is dedicated to analyse the discretization stage,
which we postulate that, despite being critical, has often been
disregarded.

As a proof of concept, the results here stated are applied to the
continuous Hopfield network and, in particular, we consider the so-
called Abe formulation [11], which has been shown to present
favourable performance in optimization [9]. When self-weights are
assumed to vanish, stable equilibria occur at binary states, which
correspond to feasible solutions of combinatorial optimization
problems. This and other results about the continuous model that
will be used during the paper are briefly recalled in Section 2. The
conventional discretization of this model results from replacing the
derivative by the finite difference, although this process often goes
unmentioned. We study this discretization from the point of view of
numerical methods, thus we firstly require to explicitly formulate
the discrete system as an one-step map, yielding a—non-standard—
numerical method. Finally, the dynamical properties of this discrete
map are analysed, leading to a major result: the Lyapunov function
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of the continuous network cannot be preserved in general by the
conventional discretization, since periodic solutions appear. To
summarize, in Section 3 we prove that discretization destroys the
gradient-like nature. In addition to the value of this result for the
Hopfield model in particular, we emphasize that the analysis of
algorithms as the discretization of continuous systems is a fruitful
methodology of general validity.

In view of the limitations of the conventional discretization of
Hopfield networks, we propose using a numerical method that has
been specifically designed for preserving the qualitative properties of
the original ODE. This aim presents remarkable similarities to the
recent approach of geometric numerical integration [12,13], which has
provided interesting results for Hamiltonian systems. However, these
results cannot be trivially extended to deal with the preservation of the
Lyapunov function of a gradient system, because in this case there is no
explicit manifold that the system resides on, thus the classification of
these methods as “geometric” is questionable. It is noticeable that this
approach has been studied from different perspectives, for instance,
within the optimization framework the discretization of appropriate
continuous dynamical systems, whose trajectory minimizes the target,
has resulted in a promising “ODE-approach to nonlinear programming”
[14,15], as well as machine learning by optimization on Riemannian
manifolds [16,17]. Also, promising results have been presented for
learning systems endowed with either a Lie-group structure [18] or a
pseudo-Riemannian metric [19], and machine learning by dynamical
systems on manifolds [20,21]. In Section 4 we present discrete gradient
methods [22], which by construction respect the energy-diminishing
feature of gradient systems regardless of the step size. Then, we con-
struct a discrete gradient integrator for the implementation of Hopfield
neural networks, with a remarkable property: the method can be
explicitly computed, which is not often the case in algorithms that
preserve qualitative properties. Incidentally, let us note that there is
limited experience in the practical implementation of discrete gradient
methods to particular applications, so we expect that this paper also
sheds light on the range of applicability of these methods.

In Section 5 we considerably expand previous results [23] by
presenting some numerical experiments that show the favourable
performance of discrete gradient methods, compared to the con-
ventional discretization. Although the theoretical results of previous
sections concern the Hopfield network whose self-weights vanish,
simulations also include the model with self-weights in order to
illustrate the generality of the proposal. The whole point of the
comparison is that enhanced performance can be expected when
preservation of the Lyapunov function is born in mind, since the
dynamical properties lie in the heart of the construction of
continuous gradient algorithms. Finally, the main conclusions of
the paper are gathered in Section 6, and some promising directions
for further research are proposed.

2. Hopfield networks as gradient algorithms

In this section we recall the equations of the model that is
adopted as a paradigmatic example of gradient algorithm, namely
continuous Hopfield neural networks used as optimization meth-
ods [3,7]. In particular, we focus on the so-called Abe formulation
[11,24,25], which is defined by the following n-dimensional
system of ODEs:

dui

dt
¼ neti; yiðtÞ ¼ tanh

uiðtÞ
β

� �
; i¼ 1;…;n ð1Þ

where yi is the output or state of neuron i, ui can be regarded as a
sort of internal potential, β40 is a parameter that regulates the
slope of the hyperbolic tangent function, and n is the number of
neurons. As for the term neti, it stands for the linear input to

neuron i, and it can plainly be expressed in matricial form:

net¼Wy�b ð2Þ
where the entries wij of the matrix W are the weights of the
connection from neuron j to neuron i, and bi is the bias of neuron i.
In the higher order generalization [26,27], the term neti is multi-
linear, i.e. an r-th order polynomial in the n variables yi:

neti ¼
1
q!

Xr

q ¼ 1

X
i1…iqð ÞA f1;…;ngq

wii1…iq yi1…yiq �bi ð3Þ

where the coefficients wii1 ;i2…iq are now the weights of q-th order
connections. In the following, we assume that the weights are
symmetric, i.e.wij ¼wji or, in general, two weights are equal if they
have the same set of sub-indices, regardless of the order. When
Hopfield networks are used as optimization methods, this
assumption leads to no loss of generality [28].

First of all, let us observe that the system given by Eqs. (1) and (3)
is not an ODE, strictly speaking, due to the presence of the variables
ui, which do not appear in differential equations. In order to state the
general results either on dynamical systems to the continuous
network, or on numerical analysis to the discretization, we reformu-
late Eq. (1) as an ODE, with the single set of variables yi:

dyi
dt

¼ dyi
dui

dui

dt
¼ 1
β

1�y2i
� �

neti ð4Þ

In this form, it is clear that the parameter β only stands for a
reparametrization of time, so in the rest of this paper we assume
β¼1 for simplicity, with no loss of generality, obtaining the ODE that
defines the continuous network:

dyi
dt

¼ 1�y2i
� �

neti9 f iðyÞ ð5Þ

A remarkable property of this system is that trajectories always
remain within the hypercube ð�1;1Þn, as long as initial values also
belong to such hypercube. In other words, the hypercube is invariant,
which is obvious from Eq. (1), since the range of the hyperbolic
tangent function is the interval ð�1;1Þ. However, if a standard
numerical method is to be applied to Eq. (5), the discretization can
destroy this property. Furthermore, it is obvious from Eq. (5) that the
equilibria of the continuous network are either vertices jyi j ¼ 1 or
interior points characterized by neti¼0.

The crucial fact about Hopfield networks given by Eq. (1) is the
existence of a Lyapunov function (see e.g. [29] for Lyapunov theory),
which apart from other technical conditions, possesses the distinct
feature that it decreases through system trajectories. In the case of
the linear dynamics of Eq. (2), the Lyapunov function is quadratic:

VðyÞ ¼ �1
2

Xn
i ¼ 1

Xn
j ¼ 1

wijyiyjþ
Xn
i ¼ 1

biyi ¼ �1
2
y>Wyþb> y ð6Þ

whereas the generalization to higher order—Eq. (3)—leads to a
multinomial Lyapunov function:

VðyÞ ¼ � 1
ðqþ1Þ!

Xr

q ¼ 1

X
i1…iqþ 1ð ÞA f1;…;ngqþ 1

wi1…iqþ 1
yi1…yiqþ 1

þ
Xn
i ¼ 1

biyi

ð7Þ
Regardless of the order of the model, the key observation is
∂V
∂yi

¼ �neti, which leads to a simple proof for V being a Lyapunov
function:

dV
dt

¼
Xn
i ¼ 1

∂V
∂yi

dyi
dt

¼ �
Xn
i ¼ 1

neti 1�y2i
� �

netir0 ð8Þ

due to the positivity of the derivative of the hyperbolic tangent
function defined in the interval ð�1;1Þ. Further, observe from Eq.
(5) that the equality dV

dt ¼ 0 only occurs at equilibria, i.e. either
vertices jyi j ¼ 1 or interior points neti¼0. This fact, together with
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